Vinasse: from a residue to a high added value biopolymer

Daiana V. Trapé , Olivia V. López , Marcelo A. Villar

Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 130

PDF
Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 130 DOI: 10.1186/s40643-021-00476-1
Research

Vinasse: from a residue to a high added value biopolymer

Author information +
History +
PDF

Abstract

This work aimed to study the feasibility of using vinasse for polyhydroxybutyrate (PHB) production by Bacillus megaterium. To optimize the culture medium, a Box–Behnken design was employed considering carbon (C), nitrogen (N), and phosphorus (Ph) concentrations as independent variables and PHB productivity as the response variable. The productivity decreased when C or N were increased, probably due to the presence of phenolic compounds and the limitation of N for the production of PHB by Bacillus sp. bacteria. An additional experimental design to optimize the C/N ratio and growing conditions (fermentation time and temperature) was carried out. Fermentation time had a statistically significant effect on PHB productivity reaching 10.6 mg/L h. On the other hand, the variability in physicochemical properties of vinasse samples led to significant differences in PHB productivity. Lower productivity values were obtained when vinasse had higher values of DBO. Therefore, biopolymers production from vinasse is a feasible alternative to valorize this bioethanol by-product.

Keywords

Vinasse / Polyhydroxybutyrate (PHB) / Bacillus megaterium / Microbial fermentation / Culture medium optimization

Cite this article

Download citation ▾
Daiana V. Trapé, Olivia V. López, Marcelo A. Villar. Vinasse: from a residue to a high added value biopolymer. Bioresources and Bioprocessing, 2021, 8(1): 130 DOI:10.1186/s40643-021-00476-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Acosta-Cárdenas A, Alcaraz-zapata W, Cardona-Betancur M. Sugarcane molasses and vinasse as a substrate for polyhydroxyalkanoates (PHA) production. Melazas y vinaza de la caña de azúcar como sustrato para la producción de polihidroxialcanoatos (PHA). RevistasUnalEduCo, 2018, 85: 220-225.

[2]

Alsafadi D, Al-Mashaqbeh O. A one-stage cultivation process for the production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) from olive mill wastewater by Haloferax mediterranei. New Biotechnol, 2017, 34: 47-53.

[3]

Amini M, Yousefi-massumabad H, Younesi H, Abyar H. Production of the polyhydroxyalkanoate biopolymer by Cupriavidus necator using beer brewery wastewater containing maltose as a primary carbon source. J Environ Chem Eng, 2020, 8.

[4]

Andrady AL. Bergmann M, Gutow L, Klages M. Persistence of plastic litter in the oceans. Marine anthropogenic litter, 2015, Cham: Springer, 57-72.

[5]

Anjum A, Zuber M, Zia KM, . Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers : a review of recent advancements. Int J Biol Macromol, 2016, 89: 161-174.

[6]

Ansari S, Fatma T. Cyanobacterial polyhydroxybutyrate (PHB): screening, optimization and characterization. PLoS ONE, 2016, 11: 1-20.

[7]

Berekaa M, Al Thawadi A. Biosynthesis of polyhydroxybutyrate (PHB) biopolymer by Bacillusmegaterium SW1-2. Application of Box–Behnken design for optimization of process parameters. Afr J Microbiol Res, 2012, 6: 2101-2108.

[8]

Bhattacharyya A, Pramanik A, Mitra A, . Utilization of vinasse for the production of polyhydroxybutyrate by Haloarculamarismortui. Folia Microbiol, 2012, 57: 71-79.

[9]

Bora L. Polyhydroxybutyrate accumulation in Bacillusmegaterium and optimization of process parameters using response surface methodology. J Polym Environ, 2013, 21: 415-420.

[10]

Bradstreet RB. Kjeldahl method for organic nitrogen. Anal Chem, 1954, 26: 185-187.

[11]

Burke RW, Mavrodineanu R. Certification and use of acidic potassium dichromate solutions as an ultraviolet absorbance standard SRM 935, 1977, Washington: Dept. of Commerce, National Bureau of Standards.

[12]

Carrilho ENVM, Labuto G, Kamogawa MY. Destination of vinasse, a residue from alcohol industry: resource recovery and prevention of pollution. Environmental materials and waste: resource recovery and pollution prevention, 2016, Amsterdam: Elsevier

[13]

Dalsasso RR, Pavan FA, Bordignon SE, . Polyhydroxybutyrate (PHB) production by Cupriavidusnecator from sugarcane vinasse and molasses as mixed substrate. Process Biochem, 2019, 85: 12-18.

[14]

Das S, Majumder A, Shukla V, . Biosynthesis of Poly(3-hydroxybutyrate) from Cheese Whey by Bacillusmegaterium NCIM 5472. J Polym Environ, 2018, 26: 4176-4187.

[15]

de Godoi LAG, Camiloti PR, Bernardes AN, . Seasonal variation of the organic and inorganic composition of sugarcane vinasse: main implications for its environmental uses. Environ Sci Pollut Res, 2019, 26: 29267-29282.

[16]

Eaton AD, Clesceri LS, Greenberg AE, Franson MAH. Standard methods for the examination of water and wastewater, 1998, 20, Washington: American P.

[17]

Fabra MJ, López-rubio A, Ambrosio-martín J, Lagaron JM. Improving the barrier properties of thermoplastic corn starch-based films containing bacterial cellulose nanowhiskers by means of PHA electrospun coatings of interest in food packaging. Food Hydrocoll, 2016, 61: 261-268.

[18]

Fagier MA, Elmugdad AA, Aziz ME, Gabra NM. Characterization of sugarcane vinasse. J Fac Sci Int Univ Afr, 2018

[19]

Ferreira SLC, Bruns H, Ferreira HS, . Box–Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta, 2007, 597: 179-186.

[20]

Fukushima NA, Palacios-Bereche MC, Palacios-Bereche R, Nebra SA. Energy analysis of the ethanol industry considering vinasse concentration and incineration. Renew Energy, 2019, 142: 96-109.

[21]

Grothe E, Moo-young M, Chisti Y. Fermentation optimization for the production of poly (β-hydroxybutyric acid) microbial thermoplastic. Enzyme Microb Technol, 1999, 25: 132-141.

[22]

Hassan MA, Bakhiet EK, Ali SG, Hussien HR. Production and characterization of polyhydroxybutyrate (PHB) produced by Bacillus sp. isolated from Egypt. J Appl Pharm Sci, 2016, 6: 46-51.

[23]

Jimenez JAL. Biopolímeros de interés industrial. Síntesis y caracterización de polyhidroxibutirato (PHB). Dissertation, 2011, Bahía Blanca: Universidad Nacional del Sur.

[24]

Kanekar PP, Kulkarni SO, Nilegaonkar SS, Sarnaik SS, Kshirsagar PR, Ponraj M, Kanekar SP. Alavi S, Thomas S, Sandeep KP, Kalarikkal N, Varghese JYS. Polymers for packaging applications. Polymers for packaging applications, 2015, Florida: Apple Academic Press, 197-225.

[25]

Kaur L, Khajuria R, Parihar L, Singh GD. Polyhydroxyalkanoates: biosynthesis to commercial production. J Microbiol Biotechnol Food Sci, 2017, 6(4): 1098-1106.

[26]

Koller M. Biodegradable and biocompatible polyhydroxy-alkanoates (PHA): auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules, 2018, 23: 362.

[27]

Kourmentza C, Pl J, Venetsaneas N, . Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering, 2017, 2017: 1-43.

[28]

Kovalcik A, Obruca S, Marova I. Polyhydroxyalkanoates: their importance and future. BioResources, 2019, 14: 2468-2471.

[29]

Lathwal P, Nehra K, Singh M, Rana JS. Characterization of novel and efficient poly-3-hydroxybutyrate (PHB) producing bacteria isolated from rhizospheric soils. J Polym Environ, 2018, 26: 3437-3450.

[30]

Liu Y, Huang S, Zhang Y, Xu F. Isolation and characterization of a thermophilic Bacillusshackletonii K5 from a biotrickling filter for the production of polyhydroxybutyrate. J Environ Sci, 2014, 26: 1453-1462.

[31]

López JA, Naranjo JM, Higuita JC, . Biosynthesis of PHB from a new isolated Bacillusmegaterium strain : outlook on future developments with endospore forming bacteria. Biotechnol Bioprocess Eng, 2012, 17: 250-258.

[32]

Mohanrasu K, Rao RGR, Dinesh GH, . Optimization of media components and culture conditions for polyhydroxyalkanoates production by Bacillusmegaterium. Fuel, 2020, 271.

[33]

Nakashima RN, de Oliveira JS. Comparative exergy assessment of vinasse disposal alternatives: concentration, anaerobic digestion and fertirrigation. Renew Energy, 2020, 147: 1969-1978.

[34]

Nielsen C, Rahman A, Rehman AU, . Food waste conversion to microbial polyhydroxyalkanoates. Microb Biotechnol, 2017, 10: 1338-1352.

[35]

Nor NM, Mohamed MS, Loh TC, . Comparative analyses on medium optimization using one-factor-at-a-time, response surface methodology, and artificial neural network for lysine—methionine biosynthesis by Pediococcuspentosaceus RF-1. Biotechnol Biotechnol Equip, 2017, 31: 935-947.

[36]

Nwinyi OC, Owolabi TA. Scanning electron microscopy and Fourier transmission analysis of polyhydroxyalkanoates isolated from bacteria species from abattoir in Ota, Nigeria. J King Saud Univ Sci, 2019, 31: 285-298.

[37]

Nygaard D, Yashchuk O, Hermida ÉB. Evaluation of culture medium on poly(3-hydroxybutyrate) production by Cupriavidus necator ATCC 17697: application of the response surface methodology. Heliyon, 2019, 5(3

[38]

Obruca S, Marova I, Melusova S, Mravcova L. Production of polyhydroxyalkanoates from cheese whey employing Bacillusmegaterium CCM 2037. Ann Microbiol, 2011, 61: 947-953.

[39]

Pais J, Serafim LS, Freitas F, Reis MAM. Conversion of cheese whey into poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Haloferaxmediterranei. N Biotechnol, 2016, 33: 224-230.

[40]

Pal A, Prabhu A, Kumar A, . Optimization of process parameters for maximum Poly(β-hydroxybutyrate) (PHB) production by Bacillus thuringiensis IAM 12077. Pol J Microbiol, 2009, 58: 149-154.

[41]

Parsaee M, Kiani M, Kiani D, Karimi K. A review of biogas production from sugarcane vinasse. Biomass Bioenerg, 2019, 122: 117-125.

[42]

Popolizio DAT. Efecto de la aplicación de vinazas de la industria del tequila en el cultivo del maíz y en la asociación planta-hongos micorrízicos arbusculares (hma), 2017, Mexico: Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco.

[43]

Porras MA. Producción de poli(hidroxialcanoato)s (PHA)s a partir de fuentes renovables de bajo costo. Dissertation, 2012, Bahía Blanca: Universidad Nacional del Sur.

[44]

Porras MA, Villar MA, Cubitto MA. Novel spectrophotometric technique for rapid determination of extractable PHA using Sudan black dye. J Biotechnol, 2017, 255: 28-32.

[45]

Pradhan S, Dikshit PK, Moholkar VS. Production, ultrasonic extraction, and characterization of poly (3-hydroxybutyrate) (PHB) using Bacillusmegaterium and Cupriavidusnecator. Polym Adv Technol, 2018, 29: 2392-2400.

[46]

Pramanik A, Mitra A, Arumugam M, . Utilization of vinasse for the production of polyhydroxybutyrate by Haloarculamarismortui. Folia Microbiol, 2012, 57: 71-79.

[47]

Prambudy H, Supriyatin T, Setiawan F. The testing of chemical oxygen demand (COD) and biological oxygen demand (BOD) of river water in Cipager Cirebon, 2019, Singapore: International Symposium on Sciences, Engineering, and Technology, 0-6.

[48]

Riis V, Mai W. Gas chromatographic determination of poly-hydroxybutyric acid in microbial biomass after hydrochloric acid propanolysis. J Chromatogr, 1988, 445: 285-289.

[49]

Syaichurrozi I. Biogas technology to treat bioethanol vinasse. Waste Technol, 2016, 4: 16-23.

[50]

Valappil SP, Misra SK, Boccaccini AR, . Large-scale production and efficient recovery of PHB with desirable material properties, from the newly characterised Bacilluscereus SPV. J Biotechnol, 2007, 132: 251-258.

[51]

Vandi L, Chan CM, Werker A, . Wood-PHA composites: mapping opportunities. Polymers, 2018, 2018(10): 1-15.

[52]

Wang B, Sharma-Shivappa R, Olson J, . Production of polyhydroxybutyrate (PHB) by Alcaligenes latus using sugar beet juice. Ind Crops Prod, 2013, 43: 802-811.

[53]

Yolmeh M, Jafari S. Applications of response surface methodology in the food industry processes. Food Bioprocess Technol, 2017, 10: 413-433.

[54]

Zanfonato K, Schmidt M, Quines LK, . Can vinasse be used as carbon source for Poly(3-hidroxybutyrate). Production by Cupriavidusnecator DSM 545. Braz J Chem Eng, 2018, 35: 901-908.

Funding

Consejo Nacional de Investigaciones Científicas y Técnicas(PIP 112-201501-00127)

Agencia Nacional de Promoción Científica y Tecnológica(PICT-2014-2410)

Universidad Nacional del Sur(PGI 24/M154)

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/