Utilization of agro-industrial by-products in Monascus fermentation: a review

Ignatius Srianta , Endang Kusdiyantini , Elok Zubaidah , Susana Ristiarini , Ira Nugerahani , Andreas Alvin , Nathania Iswanto , Bo-Bo Zhang

Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 129

PDF
Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 129 DOI: 10.1186/s40643-021-00473-4
Review

Utilization of agro-industrial by-products in Monascus fermentation: a review

Author information +
History +
PDF

Abstract

The Monascus fermentation industry has gained global attention. Its key products, i.e., pigments, functional food ingredients, food supplements, and medicinal use, are growing in the world’s market. Efforts to find the cost-effective substrate for Monascus fermentation have remained the target. This paper aimed to appraise the utilization of agro-industrial by-products (cereal, starchy tuber and root, legume, fruit, and coffee processing) as a cost-effective substrate for Monascus fermentation. The specific objective was to review the by-products pre-treatment, the fermentation process, product yield, and the bioactivity of the fermented products. Among all the by-products that could be used as the fermentation substrate, cereal brans do not need pre-treatment, but others need a suitable pre-treatment step, e.g., cassava peel, okara, and jackfruit seed to list a few, that need to be powdered beforehand. Other substrates, such as corn cob and durian seed, need soaking and size reduction through the pre-treatment step. During fermentation, Monascus produce many pigments, monacolin K, associated with rise in phenolic and flavonoid contents. These products possess antioxidant, antihypercholesterol, antidiabetes, and antiatherosclerosis activities which underpin their health significance. In conclusion, we report in this review the agro-industrial by-products which have potential prospects for pigments, functional food ingredients, food supplements, and therapeutic usages produced from Monascus fermentation.

Keywords

Agro-industry / By-product / Fermentation / Monascus

Cite this article

Download citation ▾
Ignatius Srianta, Endang Kusdiyantini, Elok Zubaidah, Susana Ristiarini, Ira Nugerahani, Andreas Alvin, Nathania Iswanto, Bo-Bo Zhang. Utilization of agro-industrial by-products in Monascus fermentation: a review. Bioresources and Bioprocessing, 2021, 8(1): 129 DOI:10.1186/s40643-021-00473-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Afiandiningsih D (2013) Pengaruh Konsentrasi Inokulum (Monascus purpureus) Terhadap Produksi Pigmen pada Substrat Tepung Kulit Singkong (Manihot esculenta) (Effect of inoculum concentration of Monascus purpureus to the production of pigments in the cassava peels flour (Manihot esculenta)). http://repository.upi.edu/id/eprint/4159. Accessed 21 June 2020

[2]

Aguilar-Raymundo VG, Sanchez-Paez R, Gutierrez-Salomon AL, Barajas-Ramirez JA. Spent coffee grounds cookies: sensory and texture characteristics, proximate composition, antioxidant activity, and total phenolic content. J Food Process Preserv, 2019, 43: 1-8.

[3]

Ahmad M, Panda BP. Screening of nutrient parameters for red pigment production by Monascus purpureus MTCC 369 under solid state fermentation by using placket burman experimental design. Int J Pharm Front Res, 2011, 1(7): 1-7.

[4]

Akihisa T, Tokuda H, Ukiya M, Kiyota A, Yasukawa K, Sakamoto N, Kimura Y, Suzuki T, Takayasu J, Nishino H. Anti-tumor initiating effects of monascin, an azaphilonoid pigment from the extract of Monascus pilosus fermented rice (red-mold rice). Chem Biodivers, 2005, 2: 1305-1309.

[5]

Alauddin Md, Islam J, Shirakawa H, Koseki T, Ardiansyah MK. Waisundara V, Shiomi N. Rice bran as a functional food: an overview of the conversion of rice bran into a superfood/functional food. Superfood and functional food—an overview of their processing and utilization, 2017 InTech

[6]

Almeida ABD, Lima TMD, Santos NH, Santana RV, Santos SCD, Egea MB. An alternative for corn bran byproduct: fermentation using M. purpureus. Nutr Food Sci, 2019, 50: 515-527.

[7]

Babitha S, Soccol CR, Pandey A. Jackfruit seed—a novel substrate for the production of Monascus pigments through solid-state fermentation. Food Technol Biotechnol, 2006, 44(4): 465-471.

[8]

Babitha S, Soccol CR, Pandey A. Solid-state fermentation for the production of Monascus pigments from jackfruit seed. Bioresour Tech, 2007, 98: 1554-1560.

[9]

Brito LF, de Queirós LD, Peluzio MCG, Ribeiro SMR, da Matta SLP, de Queiroz JH. Effect of dry coffee residues fermented with Monascus ruber on the metabolism of Apo E mice. Arg Bras Cardiol, 2012, 99(2): 747-754.

[10]

Brown MJ (1997) Durio—a bibliographic review. In: Arora RK, Rao VR, Rao AN (eds) New Delhi, India

[11]

Carvalho JC, Oishi BO, Woiciechowski AL, Pandey A, Babitha S, Soccol CR. Effect of substrates on the production of Monascus biopigments by solid-state fermentation and pigment extraction using different solvents. Indian J Biotechnol, 2006, 6: 194-199.

[12]

Carvalho AA, Lovatto PA, Hauschild L, Andretta I, Lehnen CR, Zanella I. Processing of full-fat soybean and the use in diets for pigs: digestibility and metabolism. Rev Bras Zootecnia, 2007, 36(6 Supplement): 2023-2028.

[13]

Chakraborty M, Budhwar S. Critical analysis of wheat bran as therapeutic source. Int J Trend Sci Res Dev, 2019, 3(1): 296-303.

[14]

Chen W, He Y, Zhou Y, Shao Y, Feng Y, Li M, Chen F. Edible filamentous fungi from the species Monascus: early traditional fermentations, modern molecular biology, and future genomics. Compr Rev Food Sci Food Saf, 2015, 14(5): 555-567.

[15]

Chen W, Feng Y, Molnar I, Chen F. Nature and nurture: confluence of pathway determinism with metabolic and chemical serendipity diversifies Monascus azaphilone pigments. Nat Prod Rep, 2019, 36(4): 561-572.

[16]

Cheng J, Choi B, Yang S, Suh JW. Effect of fermentation on the antioxidant activity of rice bran by Monascus pilosus KCCM60084. J Appl Biol Chem, 2016, 59(1): 57-62.

[17]

Colletti A, Attrovio A, Boffa L, Mantegna S, Cravotto G. Valorisation of by-products from soybean (Glycine max (L.) Merr.) processing. Molecules, 2020, 25(9): 1-33.

[18]

Dikshit R, Tallapragada P. Monascus purpureus: a potential source for natural pigment production. J Microbiol Biotechnol Res, 2011, 1: 164-174.

[19]

Ding Y, Pu L, Kan J. Hypolipidemic effects of lipid-lowering granulated tea preparation from Monascus-fermented grains (adlay and barley bran) mixed with lotus leaves on Sprague–Dawley rats fed a high-fat diet. J Funct Foods, 2017, 32: 80-89.

[20]

Embaby AM, Hussein MN, Hussein A. Monascus orange and red pigments production by Monascus purpureus ATCC16436 through co-solid state fermentation of corn cob and glycerol: an eco-friendly environmental low cost approach. PLoS ONE, 2018, 13(12): 1-18.

[21]

Enenebeaku CK, Enenebeaku UE, Ezejiofor TIN. Proximate composition and production of bioethanol from cassava bagasse using hydrochloric acid and Saccharomyces cerevisiae (Baker’s yeast). J Biol Chem Res, 2016, 33(1): 165-174.

[22]

FAOSTAT (2020) Crops. http://www.fao.org/faostat/en/#data/QC. Accesed 21 June 2020

[23]

Fatimah S, Suprihadi A, Kusdiyantini E. Produksi dan kestabilan pigmen merah kapang Monascus sp. menggunakan media tepung kulit singkong dengan penambahan bekatul pada konsentrasi yang berbeda (Production and stability of red pigment fungus Monascus sp. using cassava peel flour media with the addition of bran at different concentrations). J Biol, 2014, 3(3): 49-59.

[24]

Feng Y, Shao Y, Chen F. Monascus pigments. Appl Microbiol Biotechnol, 2012, 96: 1421-1440.

[25]

Hajjaj H, Francois JM, Goma G, Blanc PJ. Effect of amino acids on red pigments and citrinin production in Monascus ruber. J Food Sci, 2000, 77(3): M156-M159.

[26]

Hsu YW, Hsu LC, Liang YH, Kuo YH, Pan TM. New bioactive orange pigments with yellow fluorescence from Monascus-fermented dioscorea. J Agric Food Chem, 2011, 59: 4512-4518.

[27]

Islam MS, Begum R, Khatun M, Dey KC. A Study on nutritional and functional properties analysis of jackfruit seed flour and value addition to biscuits. IJERT, 2015, 4(12): 139-147.

[28]

Jamaluddin A, Rashid NYA, Razak DLA, Sharifudin SA, Long K. Effect of fungal fermentation on tyrosinase and elastase inhibition activity in rice bran. Agric Agric Sci Procedia, 2014, 2: 252-256.

[29]

Jamaluddin A, Razak DLA, Rashid NYA, Sharifudin SA, Kahar AA, Saad AZM, Long K. Effects of solid state fermentation by Monascus purpureus on phenolic content and biological activities of coconut testa and rice bran. J Teknol, 2016, 78(11–2): 23-28.

[30]

Japakaset J, Wongkhalaung C, Leelawatcharamas V. Utilization of soybean residue to produce monacolin K-cholesterol lowering agent. Songklanakarin J Sci Technol, 2009, 31(1): 35-39.

[31]

Kraboun K, Tochampa W, Chatdamrong W, Kongbangkerd T. Effect of monosodium glutamate and peptone on antioxidant activity of monascal waxy corn. Int Food Res J, 2013, 20(2): 623-631.

[32]

Kraboun K, Kongbangkerd T, Rojsuntornkitti K, Phanumong P. Factors and advances on fermentation of Monascus sp. for pigments and monacolin K production: a review. Int Food Res J, 2019, 26(3): 751-761.

[33]

Kumagai T, Tsukahara M, Katayama N, Yoai K, Aburatani S, Ohdan K, Fujimori KE. Whole-genome sequence of Monascus purpureus GB-01, an industrial strain for food colorant production. Microbiol Resour Announc, 2019, 8(24): e00196-e219.

[34]

Lachenmeier DW, Monakhova YB, Kuballa T, Löbell-Behrends S, Maixner S, Kohl-Himmelseher M, Waldner A, Steffen C. NMR evaluation of total statin content and HMG-CoA reductase inhibition in red yeast rice (Monascus spp.) food supplements. Chin Med, 2012

[35]

Lai J, Ke B, Hsu Y, Lee C. Dimerumic acid and deferricoprogen produced by Monascus purpureus attenuate liquid ethanol diet-induced alcoholic hepatitis via suppressing NFκB inflammation signalling pathways and stimulation of AMPK-mediated lipid metabolism. J Funct Foods, 2019, 60: 1-10.

[36]

Lee JE, Vadlani PV, Faubion J. Corn bran bioprocessing: development of an integrated process for microbial lipids production. Bioresour Technol, 2017, 243: 196-203.

[37]

Li B, Qiao M, Lu F. Composition, nutrition, and utilization of okara (soybean residue). Food Rev Int, 2012, 28(3): 231-252.

[38]

Lin YL, Wang TH, Lee MH, Su NW. Biologically active components and nutraceuticals in the Monascus-fermented rice: a review. Appl Microbiol Biotechnol, 2008, 77: 965-973.

[39]

Li-Ning PU, Guangjing C, Jianquan K. Optimization of fermentation process of Monascus barley bran and coix seed by response surface methodology. Food Sci, 2017, 2: 264-270.

[40]

Maloney K, Truong VD, Allen JC. Susceptibility of sweet potato (Ipomoea batatas) peel proteins to digestive enzymes. Food Sci Nutr, 2014, 2(4): 351-360.

[41]

Manan MA, Webb C. Insights into physical characterization of solid state fermentation: from preliminary knowledge to practical application. J Biotech Res, 2019, 10: 271-282 ISSN: 1944-3285

[42]

Miyake T, Kono I, Nozaki N, Sammoto H. Analysis of pigment compositions in various Monascus cultures. Food Sci Technol Res, 2008, 14(2): 194-197.

[43]

Moorthy M, Viswanathan K. Nutritive value of extracted coconut (Cocos nucifera) meal. Res J Agric Biol Sci, 2009, 5(4): 515-517.

[44]

Mousa SA, Abdou DAM, Mohamed GA, Abo-El-Seoud MA, Eldin AAK, El-mehalawy AA. Production of red pigment by Monascus purpureus NRRL 1992 under submerged and solid-state fermentation. Egypt J Microbiol, 2018, 53: 83-94.

[45]

Nimnoi P, Lumyong S. Improving solid-state fermentation of Monascus purpureus on agricultural products for pigment production. Food Bioprocess Technol, 2011, 4: 1384-1390.

[46]

Nugerahani I, Sutedja AM, Srianta I, Widharna RM, Marsono Y. In vivo evaluation of Monascus-fermented durian seed for antidiabetic and antihypercholesterol agent. Food Res, 2017, 1(3): 83-88.

[47]

Okpako CE, Ntui V, Osuagwu AN, Obasi FI. Proximate composition and cyanide content of cassava peels fermented with Aspergillus niger and Lactobacillus rhamnosus. J Food Agric Environ, 2008, 6(2): 251-255.

[48]

Padmavathi T, Prabhudessai T. A solid liquid state culture method to stimulate Monascus pigments by intervention of different substrates. Int Res J Biol Sci, 2013, 2(10): 22-29.

[49]

Patakova P. Monascus secondary metabolites: production and biological activity. J Ind Microbiol Biotechnol, 2013, 40: 169-181.

[50]

Pattanagul P, Pinthong R, Phianmongkhol A, Leksawasdi N. Review of angkak production (Monascus purpureus). Chiang Mai J Sci, 2007, 34: 319-328.

[51]

Prayoga MJ, Tjiptaningrum A. Pengaruh pemberian angkak (beras fermentasi Monascus purpureus) dalam meningkatkan kadar trombosit pada penderita demam berdarah dengue (The effect of giving angkak (Monascus purpureus fermented rice) in increasing platelet levels in patients with dengue fever). Med J Lampung Univ, 2016, 5(5): 6-13.

[52]

Rajeswari TR, Ponnusami V, Sugumaran KR. Production of Monascus pin low cost fermentation. IJCRGG, 2014, 6(5): 2929-2932.

[53]

Razak DLA, Rashid NYA, Jamaluddin A, Sharifudin SA, Long K. Enhancement of phenolic acid content and antioxidant activity of rice bran fermented with Rhizopus oligosporus and Monascus purpureus. Biocat Agric Biotechnol, 2015, 4(1): 33-38.

[54]

Sehrawat E, Panesar PS, Panesar R, Kumar A. Biopigment produced by Monascus purpureus MTCC 369 in submerged and solid state fermentation: a comparative study. Pigm Resin Technol, 2017

[55]

Sehrawat R, Panesar PS, Swer TL, Kumar A. Response surface methodology (RSM) mediated interaction of media concentration and process parameters for the pigment production by Monascus purpureus MTCC 369 under solid state fermentation. Pigm Resin Technol, 2017, 46(1): 14-20.

[56]

Sepelev I, Galoburda R (2015) Industrial potato peels waste application in food production: a review. In: Research for Rural Development. International Scientific Conference Proceedings (Latvia). Latvia University of Agriculture. 1, 130–136, 2015

[57]

Shao Y, Lei M, Mao Z, Zhou Y, Chen F. Insights into Monascus biology at the genetic level. Appl Microbiol Biotechnol, 2014, 98: 3911-3922.

[58]

Shi YC, Pan TM. Red mold, diabetes, and oxidative stress: a review. Appl Microbiol Biotechnol, 2012, 94(1): 47-55.

[59]

Srianta I, Harijono H. Monascus-fermented sorghum: pigments and monacolin K produced by Monascus purpureus on whole grain, dehulled grain and bran substrates. Int Food Res J, 2015, 22(1): 377-382.

[60]

Srianta I, Hendrawan B, Kusumawati N, Blanc PJ. Study on durian seed as a new substrate for angkak production. Int Food Res J, 2012, 19(3): 941-945.

[61]

Srianta I, Kusumawati N, Nugerahani I, Artanti N, Xu GR. In vitro α-glucosidase inhibitory activity of Monascus-fermented durian seed extracts. Int Food Res J, 2013, 20(2): 533-536.

[62]

Srianta I, Nugerahani I, Kusumawati N, Subianto C, Tewfik S, Tewfik I. Therapeutic antioxidant activity of Monascus-fermented durian seed: a potential functional food ingredient. IJFNPH, 2014, 7(1): 53-59.

[63]

Srianta I, Ristiarini S, Nugerahani I, Sen SK, Zhang BB, Xu GR, Blanc PJ. Recent research and development of Monascus fermentation products. Int Food Res J, 2014, 21(1): 1-12.

[64]

Srianta I, Zubaidah E, Estiasih T, Yamada M, Harijono, . Comparison of Monascus purpureus growth, pigment production and composition on different cereal substrates with solid state fermentation. Biocat Agric Biotechnol, 2016, 7: 181-186.

[65]

Srianta I, Zubaidah E, Estiasih T, Iuchi Y, Harijono YM. Antioxidant activity of pigments derived from Monascus purpureus-fermented rice, corn, and sorghum. Int Food Res J, 2017, 24(3): 1186-1191.

[66]

Statista (2020) Grain production worldwide 2018/19, by type. https://www.statista.com/statistics/263977/world-grain-production-by-type/. Accessed 21 June 2020

[67]

Su Y, Wang J, Lin T, Pan T. Production of the secondary metabolites gamma-aminobutyric acid and monacolin K by Monascus. J Ind Microbiol Biotechnol, 2003, 30(1): 1-6.

[68]

Sun C, Wu X, Chen X, Li X, Zheng Z, Jiang S. Production and characterization of okara dietary fiber produced by fermentation with Monascus anka. Food Chem, 2020, 316: 1-6.

[69]

Tan J, Chu J, Wang Y, Zhuang Y, Zhang S. High throughput system for screening of Monascus purpureus high-yield strain in pigment production. Bioresour Bioprocess, 2014, 1(16): 1-7.

[70]

Velmurugan P, Hur H, Balachandar V, Kamala-Kannan S, Lee KJ, Lee SM, Chae JC, Shea PJ, Oh BT. Monascus pigment production by solid-state fermentation with corn cob substrate. J Biosci Bioeng, 2011, 112(6): 590-594.

[71]

Vendruscolo F, Tosin I, Giachini AJ, Schmidell W, Ninow JL. Antimicrobial activity of monascus pigments produced in submerged fermentation. J Food Process Preserv, 2014, 38: 1860-1865.

[72]

Venkateswaran V, Vijayalakshmi G. Finger millet (Eleusine coracana)—an economically viable source for antihypercholesterolemic metabolites production by Monascus purpureus. J Food Sci Technol, 2010, 47(4): 426-431.

[73]

Watanabe A, Ebizuka Y. Unprecedented mechanism for chain length determination in fungal aromatic polyketide synthases. Chem Biol, 2004, 11(8): 1101-1106.

[74]

Wen Q, Cao X, Chen Z, Xiong Z, Liu J, Cheng Z, Zheng Z, Long C, Zheng B, Huang Z. An overview of Monascus fermentation processes for monacolin K production. Open Chem, 2020, 18: 10-21.

[75]

Yang Y, Liu B, Du X, Li P, Liang B, Cheng X, Du LC, Huang D, Wang L, Wang S. Complete genome sequence and transcriptomics analyses reveal pigment biosynthesis and regulatory mechanismsin an industrial strain, Monascus purpureus YY-1. Sci Rep, 2015, 5: 8331.

[76]

Zubaidah E, Dewi AP. Effect addition of rice bran on fermentation process to increasing lovastatin and intensity of red pigment angkak. Adv J Food Sci Technol, 2014, 6(1): 56-59.

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/