Engineering Escherichia coli biofilm to increase contact surface for shikimate and L-malate production

Qiang Ding , Yadi Liu , Guipeng Hu , Liang Guo , Cong Gao , Xiulai Chen , Wei Chen , Jian Chen , Liming Liu

Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 118

PDF
Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 118 DOI: 10.1186/s40643-021-00470-7
Research

Engineering Escherichia coli biofilm to increase contact surface for shikimate and L-malate production

Author information +
History +
PDF

Abstract

Microbial organelles are a promising model to promote cellular functions for the production of high-value chemicals. However, the concentrations of enzymes and nanoparticles are limited by the contact surface in single Escherichia coli cells. Herein, the definition of contact surface is to improve the amylase and CdS nanoparticles concentration for enhancing the substrate starch and cofactor NADH utilization. In this study, two biofilm-based strategies were developed to improve the contact surface for the production of shikimate and L-malate. First, the contact surface of E. coli was improved by amylase self-assembly with a blue light-inducible biofilm-based SpyTag/SpyCatcher system. This system increased the glucose concentration by 20.7% and the starch-based shikimate titer to 50.96 g L−1, which showed the highest titer with starch as substrate. Then, the contact surface of E. coli was improved using a biofilm-based CdS-biohybrid system by light-driven system, which improved the NADH concentration by 83.3% and increased the NADH-dependent L-malate titer to 45.93 g L−1. Thus, the biofilm-based strategies can regulate cellular functions to increase the efficiency of microbial cell factories based on the optogenetics, light-driven, and metabolic engineering.

Keywords

Biofilm / Contact surface / Self-assembly / Biohybrid / Shikimate / L-malate

Cite this article

Download citation ▾
Qiang Ding, Yadi Liu, Guipeng Hu, Liang Guo, Cong Gao, Xiulai Chen, Wei Chen, Jian Chen, Liming Liu. Engineering Escherichia coli biofilm to increase contact surface for shikimate and L-malate production. Bioresources and Bioprocessing, 2021, 8(1): 118 DOI:10.1186/s40643-021-00470-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahn J, Chung BK, Lee DY, Park M, Karimi IA, Jung JK, Lee H. NADPH-dependent pgi-gene knockout Escherichia coli metabolism producing shikimate on different carbon sources. FEMS Microbiol Lett, 2011, 324(1): 10-16.

[2]

Alberto RJLB, Noemí F, Georgina HC, Octavio TR, Guillermo G, Francisco B. Constitutive expression of selected genes from the pentose phosphate and aromatic pathways increases the shikimic acid yield in high-glucose batch cultures of an Escherichia coli strain lacking PTS and pykF. Microb Cell Fact, 2011, 12: 86.

[3]

Alper H, Stephanopoulos G. Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng, 2007, 9(3): 258-267.

[4]

Alvarez-Ordóez A, Coughlan LM, Briandet R, Cotter PD. Biofilms in food processing environments: challenges and opportunities. Annu Rev Food Sci T, 2019, 10(1): 173-195.

[5]

Avalos JL, Fink GR, Stephanopoulos G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat Biotechnol, 2013, 31(4): 335-341.

[6]

Benedetti I, de Lorenzo V, Nikel PI. Genetic programming of catalytic Pseudomonas putida biofilms for boosting biodegradation of haloalkanes. Metab Eng, 2016, 33: 109-118.

[7]

Castellana M, Wilson MZ, Xu Y, Joshi P, Cristea IM, Rabinowitz JD, Gitai Z, Wingreen NS. Enzyme clustering accelerates processing of intermediates through metabolic channeling. Nat Biotechnol, 2014, 32(10): 1011-1018.

[8]

Choe D, Lee JH, Yoo M, Hwang S, Sung BH, Cho S, Palsson B, Kim SC, Cho B-K. Adaptive laboratory evolution of a genome-reduced Escherichia coli. Nat Commun, 2019, 10(1): 1-14.

[9]

Choi KR, Jang WD, Yang D, Cho JS, Park D, Lee SY. Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering. Trends Biotechnol, 2019, 37(8): 817-837.

[10]

Cuny L, Pfaff D, Luther J, Ranzinger F, Hille-Eichel A. Evaluation of productive biofilms for continuous lactic acid production. Biotechnol Bioeng, 2019, 116(14): 2687-2697.

[11]

Darbani B, Stovicek V, van der Hoek SA, Borodina I. Engineering energetically efficient transport of dicarboxylic acids in yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 2019, 116(39): 19415-19420.

[12]

DeLoache WC, Russ ZN, Dueber JE. Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways. Nat Commun, 2016, 7: 11152.

[13]

Ding Q, Diao W, Gao C, Chen X, Liu L. Microbial cell engineering to improve cellular synthetic capacity. Biotechnol Adv, 2020, 45: 107649.

[14]

Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KL, Keasling JD. Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol, 2009, 27(8): 753-759.

[15]

Ellis GA, Klein WP, Lasarte-Aragonés G, Thakur M, Walper SA, Medintz IL. Artificial multienzyme scaffolds: pursuing in vitro substrate channeling with an overview of current progress. ACS Catal, 2019, 9(12): 10812-10869.

[16]

Ercan D, Demirci A. Current and future trends for biofilm reactors for fermentation processes. Crit Rev Biotechnol, 2013, 35(1): 1-14.

[17]

Fujiwara R, Noda S, Tanaka T, Kondo A. Metabolic engineering of Escherichia coli for shikimate pathway derivative production from glucose-xylose co-substrate. Nat Commun, 2020, 11(1): 279.

[18]

Gilbert C, Ellis T. Biological engineered living materials: Growing functional materials with genetically programmable properties. ACS Synth Biol, 2019, 8(1): 1-15.

[19]

Grewal PS, Samson JA, Baker JJ, Choi B, Dueber JE. Peroxisome compartmentalization of a toxic enzyme improves alkaloid production. Nat Chem Biol, 2020, 17: 96-103.

[20]

Guo JL, Suástegui M, Sakimoto KK, Moody VM, Xiao G, Nocera DG, Joshi NS. Light-driven fine chemical production in yeast biohybrids. Science, 2018, 25(10): 158-169.

[21]

Hammer SK, Avalos JL. Harnessing yeast organelles for metabolic engineering. Nat Chem Biol, 2017, 13(8): 823-832.

[22]

Honjo H, Iwasaki K, Soma Y, Tsuruno K, Hamada H, Hanai T. Synthetic microbial consortium with specific roles designated by genetic circuits for cooperative chemical production. Metab Eng, 2019, 55: 268-275.

[23]

Hu GP, Zhou J, Chen XL, Qian YY, Gao C, Guo L, Xu P, Chen W, Chen J, Li Y, Liu LM. Engineering synergetic CO2-fixing pathways for malate production. Metab Eng, 2018, 47: 496-504.

[24]

Hu GP, Li Z, Ma DL, Ye C, Zhang LP, Gao C, Liu LM, Chen XL. Light-driven CO2 sequestration in Escherichia coli to achieve theoretical yield of chemicals. Nat Catal, 2021, 4: 395-406.

[25]

Hu GP, Li ZH, Ma DL, Ye C, Zhang LP, Gao C, Liu LM, Chen XL. Light-driven CO2 sequestration in Escherichia coli to achieve theoretical yield of chemicals. Nat Catal, 2021, 4: 395-406.

[26]

Huang J, Liu S, Zhang C, Wang X, Pu J, Ba F, Xue S, Ye H, Zhao T, Li K, . Programmable and printable Bacillus subtilis biofilms as engineered living materials. Nat Chem Biol, 2019, 15(1): 34-41.

[27]

Inokuma K, Kurono H, Haan RD, Heber van Zyl W, Hasunuma T, Kondo A. Novel strategy for anchorage position control of GPI-attached proteins in the yeast cell wall using different GPI-anchoring domains. Metab Eng, 2020, 57: 110-117.

[28]

Jayaraman P, Devarajan K, Chua TK, Zhang H, Gunawan E, Poh CL. Blue light-mediated transcriptional activation and repression of gene expression in bacteria. Nucleic Acids Res, 2016, 44(14): 6994-7005.

[29]

Jayaraman P, Yeoh JW, Zhang J, Poh CL. Programming the dynamic control of bacterial gene expression with a chimeric ligand- and light-based promoter system. ACS Synth Biol, 2018, 7(11): 2627-2639.

[30]

Jiang L, Song X, Li Y, Xu Q, Pu J, Huang H, Zhong C. Programming integrative extracellular and intracellular biocatalysis for rapid, robust, and recyclable synthesis of trehalose. ACS Catal, 2018, 8(3): 1837-1842.

[31]

Jiang Y, Liu Y, Zhang X, Gao H, Mou L, Wu M, Zhang W, Xin F, Jiang M. Biofilm application in the microbial biochemicals production process. Biotechnol Adv, 2021, 48: 107724.

[32]

Jin S, Jeon Y, Jeon MS, Shin J, Song Y, Kang S, Bae J, Cho S, Lee JK, Kim DR, . Acetogenic bacteria utilize light-driven electrons as an energy source for autotrophic growth. Proc Natl Acad Sci U S A, 2021, 118(9): e2020552118.

[33]

Kay E, Humair B, Denervaud V, Riedel K, Spahr S, Eberl L, Valverde C, Haas D. Two GacA-dependent small RNAs modulate the quorum-sensing response in Pseudomonas aeruginosa. J Bacteriol, 2006, 188(16): 6026-6033.

[34]

Knop DR, Chandran SS, Barker JL, von Daeniken R, Weber W, Frost JW. Hydroaromatic equilibration during biosynthesis of shikimic acid. J Am Chem Soc, 2001, 123: 10173-10182.

[35]

Ko YS, Kim JW, Lee JA, Han T, Kim GB, Park JE, Lee SY. Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production. Chem Soc Rev, 2020, 49(14): 4615-4636.

[36]

Kogure T, Kubota T, Suda M, Hiraga K, Inui M. Metabolic engineering of Corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction. Metab Eng, 2016, 38: 204-216.

[37]

Koizumi S, Endo T, Tabata K, Ozaki A. Large-scale production of UDP-galactose and globotriose by coupling metabolically engineered bacteria. Nat Biotechnol, 1998, 16(9): 847-850.

[38]

Kuska J, O'Reilly E. Engineered biosynthetic pathways and biocatalytic cascades for sustainable synthesis. Curr Opin Chem Biol, 2020, 58: 146-154.

[39]

Lee SY, Kim HU. Systems strategies for developing industrial microbial strains. Nat Biotechnol, 2015, 33(10): 1061-1072.

[40]

Leonov PS, Flores-Alsina X, Gernaey KV, Sternberg C. Microbial biofilms in biorefinery—towards a sustainable production of low-value bulk chemicals and fuels. Biotechnol Adv, 2021, 50: 107766.

[41]

Li C, Zhang R, Wang J, Wilson LM, Yan Y. Protein engineering for improving and diversifying natural product biosynthesis. Trends Biotechnol, 2020, 38(7): 729-744.

[42]

Nguyen PQ, Botyanszki Z, Tay PK, Joshi NS. Programmable biofilm-based materials from engineered curli nanofibres. Nat Commun, 2014, 5(2): 486-495.

[43]

Nielsen J, Keasling JD. Engineering cellular metabolism. Cell, 2016, 164(6): 1185-1197.

[44]

Niemeyer CM, Sano T, Smith CL, Cantor CR. Oligonucleotide-directed self-assembly of proteins: semisynthetic DNA-streptavidin hybrid molecules as connectors for the generation of macroscopic arrays and the construction of supramolecular bioconjugates. Nucleic Acids Res, 1994, 22(25): 5530-5539.

[45]

Ohta K, BeallL DS, Mejia JP, Shanmugam KT, Ingram LO. Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase Il. Appl Environ Microbiol, 1991, 57(7): 893-900.

[46]

Olmez TT, Sahin Kehribar E, Isilak ME, Lu TK, Seker UOS. Synthetic genetic circuits for self-actuated cellular nanomaterial fabrication devices. ACS Synth Biol, 2019, 8(9): 2152-2162.

[47]

Pham HL, Wong A, Chua N, Teo WS, Yew WS, Chang MW. Engineering a riboswitch-based genetic platform for the self-directed evolution of acid-tolerant phenotypes. Nat Commun, 2017, 8(1): 411-423.

[48]

Quijano-Rubio A, Yeh HW, Park J, Lee H, Langan RA, Boyken SE, Lajoie MJ, Cao L, Chow CM, Miranda MC, . De novo design of modular and tunable protein biosensors. Nature, 2021, 591: 482-487.

[49]

Reifenrath M, Oreb M, Boles E, Tripp J. Artificial ER-derived vesicles as synthetic organelles for in Vivo compartmentalization of biochemical pathways. ACS Synth Biol, 2020, 9(11): 2909-2916.

[50]

Sakimoto KKWAB, Yang P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science, 2016, 20(15–20): 74-77.

[51]

Sandoval NR, Papoutsakis ET. Engineering membrane and cell-wall programs for tolerance to toxic chemicals: Beyond solo genes. Curr Opin Microbiol, 2016, 33: 56-66.

[52]

Titorenko VI, Nicaud JM, Wang H, Chan H, Rachubinski RA. Acyl-CoA oxidase is imported as a heteropentameric, cofactor-containing complex into peroxisomes of Yarrowia lipolytica. J Cell Biol, 2002, 156(3): 481-494.

[53]

Tsai SL, Goyal G, Chen W. Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production. Appl Environ Microbiol, 2010, 76(22): 7514-7520.

[54]

Valentini M, Filloux A. Biofilms and cyclic di-GMP (c-di-GMP) signaling: Lessons from Pseudomonas aeruginosa and other bacteria. J Biol Chem, 2016, 291(24): 12547-12555.

[55]

Walker KA, Atkins CL, Osuna R. Functional determinants of the Escherichia coli fis promoter: Roles of -35, -10, and transcription initiation regions in the response to stringent control and growth phase-dependent regulation. J Bacteriol, 1999, 181(4): 1269-1280.

[56]

Wang X, Li J, Zhang C, Zhang Y, Meng J. Self-assembly of CdS@C. Beijerinckii hybrid system for efficient lignocellulosic butanol production. Chem Eng J, 2021, 424(7144): 130458.

[57]

Wei W, Sun P, Li Z, Song K, Su W, Wang B, Liu Y, Zhao J. A surface-display biohybrid approach to light-driven hydrogen production in air. Sci Adv, 2018, 4(2): 263-272.

[58]

Yang D, Park SY, Lee SY. Production of rainbow colorants by metabolically engineered Escherichia coli. Adv Sci, 2021, 8: e2100743.

[59]

Yarwood JM, Bartels DJ, Volper EM, Greenberg EP. Quorum sensing in Staphylococcus aureus biofilms. J Bacteriol, 2004, 186(6): 1838-1850.

[60]

Zambanini T, Kleineberg W, Sarikaya E, Buescher JM, Meurer G, Wierckx N, Blank LM. Enhanced malic acid production from glycerol with high-cell density Ustilago trichophora TZ1 cultivations. Biotechnol Biofuels, 2016, 9: 135.

[61]

Zelle RM, de Hulster E, van Winden WA, de Waard P, Dijkema C, Winkler AA, Geertman JM, van Dijken JP, Pronk JT, van Maris AJ. Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microbiol, 2008, 74(9): 2766-2777.

[62]

Zhang GQ, Quin MB, Schmidt-Dannert C. Self-assembling protein scaffold system for easy in vitro coimmobilization of biocatalytic cascade enzymes. ACS Catal, 2018, 8(6): 5611-5620.

[63]

Zhao EM, Suek N, Wilson MZ, Dine E, Pannucci NL, Gitai Z, Avalos JL, Toettcher JE. Light-based control of metabolic flux through assembly of synthetic organelles. Nat Chem Biol, 2019, 15(6): 589-597.

Funding

National Key R & D Program of China(2020YFA0908300)

Science Fund for Creative Research Groups of the National Natural Science Foundation of China (32021005)

Provincal Outstanding Youth Foundation of Jiangsu Province(BK20211529)

the National Natural Science Foundation of China(21978113)

National Natural Science Foundation of China(22108099)

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/