From induction to secretion: a complicated route for cellulase production in Trichoderma reesei

Su Yan , Yan Xu , Xiao-Wei Yu

Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 107

PDF
Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 107 DOI: 10.1186/s40643-021-00461-8
Review

From induction to secretion: a complicated route for cellulase production in Trichoderma reesei

Author information +
History +
PDF

Abstract

The filamentous fungus Trichoderma reesei has been widely used for cellulase production that has extensive applications in green and sustainable development. Increasing costs and depletion of fossil fuels provoke the demand for hyper-cellulase production in this cellulolytic fungus. To better manipulate T. reesei for enhanced cellulase production and to lower the cost for large-scale fermentation, it is wise to have a comprehensive understanding of the crucial factors and complicated biological network of cellulase production that could provide new perspectives for further exploration and modification. In this review, we summarize recent progress and give an overview of the cellular process of cellulase production in T. reesei, including the carbon source-dependent cellulase induction, complicated transcriptional regulation network, and efficient protein assembly and trafficking. Among that, the key factors involved in cellulase production were emphasized, shedding light on potential perspectives for further engineering.

Keywords

Trichoderma reesei / Cellulase / β-Glucosidase / Transporter / Induction / Transcription factor / Environmental factor / Secretion

Cite this article

Download citation ▾
Su Yan, Yan Xu, Xiao-Wei Yu. From induction to secretion: a complicated route for cellulase production in Trichoderma reesei. Bioresources and Bioprocessing, 2021, 8(1): 107 DOI:10.1186/s40643-021-00461-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Al-Sheikh H, Watson AJ, Lacey GA, Punt PJ, MacKenzie DA, Jeenes DJ, Pakula T, Penttila M, Alcocer MJ, Archer DB. Endoplasmic reticulum stress leads to the selective transcriptional downregulation of the glucoamylase gene in Aspergillus niger. Mol Microbiol, 2004, 53: 1731-1742.

[2]

Antonieto ACC, Nogueira KMV, de Paula RG, Nora LC, Cassiano MHA, Guazzaroni ME, Almeida F, da Silva TA, Ries LNA, de Assis LJ, Goldman GH, Silva RN, Silva-Rocha R. A novel Cys2His2 zinc finger homolog of AZF1 modulates holocellulase expression in Trichoderma reesei. Msystems., 2019, 4: e00161-e219.

[3]

Bao J, Huang M, Petranovic D, Nielsen J. Moderate expression of SEC16 increases protein secretion by Saccharomyces cerevisiae. Appl Environ Microbiol, 2017, 83: e03400-e3416.

[4]

Bayram O, Braus GH. Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev, 2012, 36: 1-24.

[5]

Beier S, Hinterdobler W, Bazafkan H, Schillinger L, Schmoll M. CLR1 and CLR2 are light dependent regulators of xylanase and pectinase genes in Trichoderma reesei. Fungal Genet Biol, 2020, 136: 103315.

[6]

Beier S, Hinterdobler W, Monroy AA, Bazafkan H, Schmoll M. The Kinase USK1 Regulates Cellulase Gene Expression and Secondary Metabolite Biosynthesis in Trichoderma reesei. Front Microbiol, 2020, 11: 974.

[7]

Bernasconi R, Molinari M. ERAD and ERAD tuning: disposal of cargo and of ERAD regulators from the mammalian ER. Curr Opin Cell Biol, 2011, 23: 176-183.

[8]

Bischof RH, Ramoni J, Seiboth B. Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microb Cell Fact, 2016, 15: 106.

[9]

Cao Y, Zheng F, Wang L, Zhao G, Chen G, Zhang W, Liu W. Rce1, a novel transcriptional repressor, regulates cellulase gene expression by antagonizing the transactivator Xyr1 in Trichoderma reesei. Mol Microbiol, 2017, 105: 65-83.

[10]

Cao Y, Zheng F, Zhang W, Meng X, Liu W. Trichoderma reesei XYR1 recruits SWI/SNF to facilitate cellulase gene expression. Mol Microbiol, 2019, 112: 1145-1162.

[11]

Carvalho ND, Arentshorst M, Kooistra R, Stam H, Sagt CM, van den Hondel CA, Ram AF. Effects of a defective ERAD pathway on growth and heterologous protein production in Aspergillus niger. Appl Microbiol Biotechnol, 2011, 89: 357-373.

[12]

Carvalho ND, Jorgensen TR, Arentshorst M, Nitsche BM, van den Hondel CA, Archer DB, Ram AF. Genome-wide expression analysis upon constitutive activation of the HacA bZIP transcription factor in Aspergillus niger reveals a coordinated cellular response to counteract ER stress. BMC Genomics, 2012, 13: 350.

[13]

Castellanos F, Schmoll M, Martinez P, Tisch D, Kubicek CP, Herrera-Estrella A, Esquivel-Naranjo EU. Crucial factors of the light perception machinery and their impact on growth and cellulase gene transcription in Trichoderma reesei. Fungal Genet Biol, 2010, 47: 468-476.

[14]

Celinska E, Nicaud JM. Filamentous fungi-like secretory pathway strayed in a yeast system: peculiarities of Yarrowia lipolytica secretory pathway underlying its extraordinary performance. Appl Microbiol Biotechnol, 2019, 103: 39-52.

[15]

Chen L, Zou G, Wang J, Wang J, Liu R, Jiang Y, Zhao G, Zhou Z. Characterization of the Ca(2+) -responsive signaling pathway in regulating the expression and secretion of cellulases in Trichoderma reesei Rut-C30. Mol Microbiol, 2016, 100: 560-575.

[16]

Chen Y, Shen Y, Wang W, Wei D. Mn(2+) modulates the expression of cellulase genes in Trichoderma reesei Rut-C30 via calcium signaling. Biotechnol Biofuels, 2018, 11: 54.

[17]

Chen Y, Wu C, Shen Y, Ma Y, Wei D, Wang W. N, N-dimethylformamide induces cellulase production in the filamentous fungus Trichoderma reesei. Biotechnol Biofuels, 2019, 12: 36.

[18]

Chen Y, Fan X, Zhao X, Shen Y, Xu X, Wei L, Wang W, Wei D. cAMP activates calcium signalling via phospholipase C to regulate cellulase production in the filamentous fungus Trichoderma reesei. Biotechnol Biofuels, 2021, 14: 62.

[19]

Chen Y, Lin A, Liu P, Fan X, Wu C, Li N, Wei L, Wang W, Wei D. Trichoderma reesei ACE4, a novel transcriptional activator involved in the regulation of cellulase genes during growth on cellulose. Appl Environ Microbiol, 2021, 87: e0059321.

[20]

Chen Y, Wang W, Liu P, Lin A, Fan X, Wu C, Li N, Wei L, Wei D. The novel repressor Rce2 competes with Ace3 to regulate cellulase gene expression in the filamentous fungus Trichoderma reesei. Mol Microbiol, 2021

[21]

Cherry JR, Fidantsef AL. Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol, 2003, 14: 438-443.

[22]

Conesa A, Punt PJ, van Luijk N, van den Hondel CA. The secretion pathway in filamentous fungi: a biotechnological view. Fungal Genet Biol, 2001, 33: 155-171.

[23]

Coradetti ST, Craig JP, Xiong Y, Shock T, Tian C, Glass NL. Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi. Proc Natl Acad Sci U S A, 2012, 109: 7397-7402.

[24]

Cziferszky A, Mach RL, Kubicek CP. Phosphorylation positively regulates DNA binding of the carbon catabolite repressor Cre1 of Hypocrea jecorina (Trichoderma reesei). J Biol Chem, 2002, 277: 14688-14694.

[25]

de Assis LJ, Silva LP, Bayram O, Dowling P, Kniemeyer O, Kruger T, Brakhage AA, Chen Y, Dong L, Tan K, Wong KH, Ries LNA, Goldman GH. Carbon catabolite repression in filamentous fungi is regulated by phosphorylation of the transcription factor CreA. Mbio, 2021, 12: e03146-e3220.

[26]

de Paula RG, Antonieto ACC, Ribeiro LFC, Carraro CB, Nogueira KMV, Lopes DCB, Silva AC, Zerbini MT, Pedersoli WR, Costa MDN, Silva RN. New Genomic Approaches to Enhance Biomass Degradation by the Industrial Fungus Trichoderma reesei. Int J Genomics, 2018, 2018: 1974151.

[27]

Derntl C, Rassinger A, Srebotnik E, Mach RL, Mach-Aigner AR. Identification of the Main Regulator Responsible for Synthesis of the Typical Yellow Pigment Produced by Trichoderma reesei. Appl Environ Microbiol, 2016, 82: 6247-6257.

[28]

Dos Santos Castro L, de Paula RG, Antonieto AC, Persinoti GF, Silva-Rocha R, Silva RN. Understanding the Role of the Master Regulator XYR1 in Trichoderma reesei by Global Transcriptional Analysis. Front Microbiol, 2016, 7: 175.

[29]

Druzhinina IS, Kubicek CP. Genetic engineering of Trichoderma reesei cellulases and their production. Microb Biotechnol, 2017, 10: 1485-1499.

[30]

Espeso EA, Tilburn J, Sanchez-Pulido L, Brown CV, Valencia A, Arst HN Jr, Penalva MA. Specific DNA recognition by the Aspergillus nidulans three zinc finger transcription factor PacC. J Mol Biol, 1997, 274: 466-480.

[31]

Fan F, Ma G, Li J, Liu Q, Benz JP, Tian C, Ma Y. Genome-wide analysis of the endoplasmic reticulum stress response during lignocellulase production in Neurospora crassa. Biotechnol Biofuels, 2015, 8: 66.

[32]

Fitz E, Gamauf C, Seiboth B, Wanka F. Deletion of the small GTPase rac1 in Trichoderma reesei provokes hyperbranching and impacts growth and cellulase production. Fungal Biol Biotechnol, 2019, 6: 16.

[33]

Fowler T, Brown RD Jr. The bgI1 gene encoding extracellular β-glucosidase from Trichoderma reesei is required for rapid induction of the cellulase complex. Mol Microbiol, 1992, 6: 3225-3235.

[34]

Gao F, Hao Z, Sun X, Qin L, Zhao T, Liu W, Luo H, Yao B, Su X. A versatile system for fast screening and isolation of Trichoderma reesei cellulase hyperproducers based on DsRed and fluorescence-assisted cell sorting. Biotechnol Biofuels, 2018, 11: 261.

[35]

Guerfal M, Ryckaert S, Jacobs PP, Ameloot P, Van Craenenbroeck K, Derycke R, Callewaert N. The HAC1 gene from Pichia pastoris: characterization and effect of its overexpression on the production of secreted, surface displayed and membrane proteins. Microb Cell Fact, 2010, 9: 49.

[36]

Guo B, Sato N, Biely P, Amano Y, Nozaki K. Comparison of catalytic properties of multiple β-glucosidases of Trichoderma reesei. Appl Microbiol Biotechnol, 2016, 100: 4959-4968.

[37]

Gupta VK, Steindorff AS, de Paula RG, Silva-Rocha R, Mach-Aigner AR, Mach RL, Silva RN. The Post-genomic Era of Trichoderma reesei: What's Next?. Trends Biotechnol, 2016, 34: 970-982.

[38]

Hagiwara D, Kondo A, Fujioka T, Abe K. Functional analysis of C2H2 zinc finger transcription factor CrzA involved in calcium signaling in Aspergillus nidulans. Curr Genet, 2008, 54: 325-338.

[39]

Hakkinen M, Arvas M, Oja M, Aro N, Penttila M, Saloheimo M, Pakula TM. Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates. Microb Cell Fact, 2012, 11: 134.

[40]

Hakkinen M, Sivasiddarthan D, Aro N, Saloheimo M, Pakula TM. The effects of extracellular pH and of the transcriptional regulator PACI on the transcriptome of Trichoderma reesei. Microb Cell Fact, 2015, 14: 63.

[41]

Han L, Liu K, Ma W, Jiang Y, Hou S, Tan Y, Yuan Q, Niu K, Fang X. Redesigning transcription factor Cre1 for alleviating carbon catabolite repression in Trichoderma reesei. Synth Syst Biotechnol, 2020, 5: 230-235.

[42]

Han L, Tan Y, Ma W, Niu K, Hou S, Guo W, Liu Y, Fang X. Precision Engineering of the Transcription Factor Cre1 in Hypocrea jecorina (Trichoderma reesei) for Efficient Cellulase Production in the Presence of Glucose. Front Bioeng Biotech, 2020, 8: 852.

[43]

Havukainen S, Valkonen M, Koivuranta K, Landowski CP. Studies on sugar transporter CRT1 reveal new characteristics that are critical for cellulase induction in Trichoderma reesei. Biotechnol Biofuels, 2020, 13: 158.

[44]

He R, Ma L, Li C, Jia W, Li D, Zhang D, Chen S. Trpac1, a pH response transcription regulator, is involved in cellulase gene expression in Trichoderma reesei. Enzyme Microb Technol, 2014, 67: 17-26.

[45]

Hernández-Ortiz P, Espeso EA. Phospho-regulation and nucleocytoplasmic trafficking of CrzA in response to calcium and alkaline-pH stress in Aspergillus nidulans. Mol Microbiol, 2013, 89: 532-551.

[46]

Hoang HD, Maruyama J, Kitamoto K. Modulating endoplasmic reticulum-Golgi cargo receptors for improving secretion of carrier-fused heterologous proteins in the filamentous fungus Aspergillus oryzae. Appl Environ Microbiol, 2015, 81: 533-543.

[47]

Hou J, Tyo K, Liu Z, Petranovic D, Nielsen J. Engineering of vesicle trafficking improves heterologous protein secretion in Saccharomyces cerevisiae. Metab Eng, 2012, 14: 120-127.

[48]

Ivanova C, Ramoni J, Aouam T, Frischmann A, Seiboth B, Baker SE, Le Crom S, Lemoine S, Margeot A, Bidard F. Genome sequencing and transcriptome analysis of Trichoderma reesei QM9978 strain reveals a distal chromosome translocation to be responsible for loss of vib1 expression and loss of cellulase induction. Biotechnol Biofuels, 2017, 10: 209.

[49]

Karaffa L, Fekete E, Gamauf C, Szentirmai A, Kubicek CP, Seiboth B. D-Galactose induces cellulase gene expression in Hypocrea jecorina at low growth rates. Microbiol-Sgm, 2006, 152: 1507-1514.

[50]

Karaffa L, Coulier L, Fekete E, Overkamp KM, Druzhinina IS, Mikus M, Seiboth B, Novak L, Punt PJ, Kubicek CP. The intracellular galactoglycome in Trichoderma reesei during growth on lactose. Appl Microbiol Biotechnol, 2013, 97: 5447-5456.

[51]

Karimi Aghcheh R, Nemeth Z, Atanasova L, Fekete E, Paholcsek M, Sandor E, Aquino B, Druzhinina IS, Karaffa L, Kubicek CP. The VELVET A orthologue VEL1 of Trichoderma reesei regulates fungal development and is essential for cellulase gene expression. PLoS ONE, 2014, 9: e112799.

[52]

Kiesenhofer DP, Mach RL, Mach-Aigner AR. Influence of cis Element Arrangement on Promoter Strength in Trichoderma reesei. Appl Environ Microbiol, 2018, 84: e01742-e1817.

[53]

Kimura S, Maruyama J, Kikuma T, Arioka M, Kitamoto K. Autophagy delivers misfolded secretory proteins accumulated in endoplasmic reticulum to vacuoles in the filamentous fungus Aspergillus oryzae. Biochem Biophys Res Commun, 2011, 406: 464-470.

[54]

Kubicek CP, Mikus M, Schuster A, Schmoll M, Seiboth B. Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol Biofuels, 2009, 2: 19.

[55]

Lemmon SK, Traub LM. Sorting in the endosomal system in yeast and animal cells. Curr Opin Cell Biol, 2000, 12: 457-466.

[56]

Li C, Yang Z, Zhang RH, Zhang D, Chen S, Ma L. Effect of pH on cellulase production and morphology of Trichoderma reesei and the application in cellulosic material hydrolysis. J Biotechnol, 2013, 168: 470-477.

[57]

Li C, Lin F, Li Y, Wei W, Wang H, Qin L, Zhou Z, Li B, Wu F, Chen Z. A beta-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production. Microb Cell Fact, 2016, 15: 151.

[58]

Li C, Lin F, Zhou L, Qin L, Li B, Zhou Z, Jin M, Chen Z. Cellulase hyper-production by Trichoderma reesei mutant SEU-7 on lactose. Biotechnol Biofuels, 2017, 10: 228.

[59]

Li C, Pang AP, Yang H, Lv R, Zhou Z, Wu FG, Lin F. Tracking localization and secretion of cellulase spatiotemporally and directly in living Trichoderma reesei. Biotechnol Biofuels, 2019, 12: 200.

[60]

Li J, Zhang MM, Wan C, Den Haan R, Bai FW, Zhao XQ. Improved cellulase production in recombinant Saccharomyces cerevisiae by disrupting the cell wall protein-encoding gene CWP2. J Biosci Bioeng, 2020, 129: 165-171.

[61]

Lin L, Sun Z, Li J, Chen Y, Liu Q, Sun W, Tian C. Disruption of gul-1 decreased the culture viscosity and improved protein secretion in the filamentous fungus Neurospora crassa. Microb Cell Fact, 2018, 17: 96.

[62]

Liu G, Qu Y. Engineering of filamentous fungi for efficient conversion of lignocellulose: Tools, recent advances and prospects. Biotechnol Adv, 2019, 37: 519-529.

[63]

Liu R, Chen L, Jiang Y, Zhou Z, Zou G. Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov, 2015, 1: 15007.

[64]

Liu K, Dong Y, Wang F, Jiang B, Wang M, Fang X. Regulation of cellulase expression, sporulation, and morphogenesis by velvet family proteins in Trichoderma reesei. Appl Microbiol Biotechnol, 2016, 100: 769-779.

[65]

Liu P, Lin A, Zhang G, Zhang J, Chen Y, Shen T, Zhao J, Wei D, Wang W. Enhancement of cellulase production in Trichoderma reesei RUT-C30 by comparative genomic screening. Microb Cell Fact, 2019, 18: 81.

[66]

Liu P, Zhang G, Chen Y, Zhao J, Wang W, Wei D. Enhanced cellulase production by decreasing intercellular pH through H(+)-ATPase gene deletion in Trichoderma reesei RUT-C30. Biotechnol Biofuels, 2019, 12: 195.

[67]

Lv X, Zheng F, Li C, Zhang W, Chen G, Liu W. Characterization of a copper responsive promoter and its mediated overexpression of the xylanase regulator 1 results in an induction-independent production of cellulases in Trichoderma reesei. Biotechnol Biofuels, 2015, 8: 67.

[68]

Mach RL, Seiboth B, Myasnikov A, Gonzalez R, Strauss J, Harkki AM, Kubicek CP. The bgl1 gene of Trichoderma reesei QM 9414 encodes an extracellular, cellulose-inducible β-glucosidase involved in cellulase induction by sophorose. Mol Microbiol, 1995, 16: 687-697.

[69]

Mandels M, Reese ET. Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J Bacteriol, 1957, 73: 269-278.

[70]

Mandels M, Reese ET. Induction of cellulase in fungi by cellobiose. J Bacteriol, 1960, 79: 816-826.

[71]

Markku S, Mari V, Merja P. Activation mechanisms of the HAC1-mediated unfolded protein response in filamentous fungi. Mol Microbiol, 2003, 47: 1149-1161.

[72]

Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EG, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol, 2008, 26: 553-560.

[73]

Meng QS, Zhang F, Liu CG, Zhao XQ, Bai FW. Identification of a novel repressor encoded by the putative gene ctf1 for cellulase biosynthesis in Trichoderma reesei through artificial zinc finger engineering. Biotechnol Bioeng, 2020, 117: 1747-1760.

[74]

Mori K. The unfolded protein response: the dawn of a new field. Proc. Jpn Acad Ser B Phys Biol Sci, 2015, 91: 469-480.

[75]

Nitta M, Furukawa T, Shida Y, Mori K, Kuhara S, Morikawa Y, Ogasawara W. A new Zn(II)(2)Cys(6)-type transcription factor BglR regulates beta-glucosidase expression in Trichoderma reesei. Fungal Genet Biol, 2012, 49: 388-397.

[76]

Nogueira KMV, de Paula RG, Antonieto ACC, Dos Reis TF, Carraro CB, Silva AC, Almeida F, Rechia CGV, Goldman GH, Silva RN. Characterization of a novel sugar transporter involved in sugarcane bagasse degradation in Trichoderma reesei. Biotechnol Biofuels, 2018, 11: 84.

[77]

Nogueira KMV, Mendes V, Carraro CB, Taveira IC, Oshiquiri LH, Gupta VK, Silva RN. Sugar transporters from industrial fungi: Key to improving second-generation ethanol production. Renew. Sust. Energ. Rev., 2020, 131: 109991.

[78]

Pakula TM, Laxell M, Huuskonen A, Uusitalo J, Saloheimo M, Penttila M. The effects of drugs inhibiting protein secretion in the filamentous fungus Trichoderma reesei. Evidence for down-regulation of genes that encode secreted proteins in the stressed cells. J Biol Chem, 2003, 278: 45011-45020.

[79]

Pang AP, Wang H, Luo Y, Yang Z, Liu Z, Wang Z, Li B, Yang S, Zhou Z, Lu X, Wu FG, Lu Z, Lin F. Dissecting cellular function and distribution of beta-glucosidases in Trichoderma reesei. Mbio, 2021, 12: e03671-e3720.

[80]

Pei X, Fan F, Lin L, Chen Y, Sun W, Zhang S, Tian C. Involvement of the adaptor protein 3 complex in lignocellulase secretion in Neurospora crassa revealed by comparative genomic screening. Biotechnol Biofuels, 2015, 8: 124.

[81]

Peterson R, Nevalainen H. Trichoderma reesei RUT-C30–thirty years of strain improvement. Microbiology, 2012, 158: 58-68.

[82]

Porciuncula JD, Furukawa T, Shida Y, Mori K, Kuhara S, Morikawa Y, Ogasawara W. Identification of major facilitator transporters involved in cellulase production during lactose culture of Trichoderma reesei PC-3-7. Biosci Biotech Bioch, 2013, 77: 1014-1022.

[83]

Portnoy T, Margeot A, Linke R, Atanasova L, Fekete E, Sandor E, Hartl L, Karaffa L, Druzhinina IS, Seiboth B, Le Crom S, Kubicek CP. The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation. BMC Genomics, 2011, 12: 269.

[84]

Portnoy T, Margeot A, Seidl-Seiboth V, Le Crom S, Ben Chaabane F, Linke R, Seiboth B, Kubicek CP. Differential regulation of the cellulase transcription factors XYR1, ACE2, and ACE1 in Trichoderma reesei strains producing high and low levels of cellulase. Eukaryot Cell, 2011, 10: 262-271.

[85]

Qi F, Zhang W, Zhang F, Chen G, Liu W. Deciphering the effect of the different N-glycosylation sites on the secretion, activity, and stability of cellobiohydrolase I from Trichoderma reesei. Appl Environ Microbiol, 2014, 80: 3962-3971.

[86]

Qian Y, Sun Y, Zhong L, Sun N, Sheng Y, Qu Y, Zhong Y. The GATA-Type Transcriptional Factor Are1 Modulates the Expression of Extracellular Proteases and Cellulases in Trichoderma reesei. Int J Mol Sci, 2019, 20: 15.

[87]

Ries L, Pullan ST, Delmas S, Malla S, Blythe MJ, Archer DB. Genome-wide transcriptional response of Trichoderma reesei to lignocellulose using RNA sequencing and comparison with Aspergillus niger. BMC Genomics, 2013, 14: 541.

[88]

Ries L, Belshaw NJ, Ilmen M, Penttila ME, Alapuranen M, Archer DB. The role of CRE1 in nucleosome positioning within the cbh1 promoter and coding regions of Trichoderma reesei. Appl Microbiol Biotechnol, 2014, 98: 749-762.

[89]

Saloheimo M, Pakula TM. The cargo and the transport system: secreted proteins and protein secretion in Trichoderma reesei (Hypocrea jecorina). Microbiology, 2012, 158: 46-57.

[90]

Saloheimo A, Aro N, Ilmen M, Penttila M. Isolation of the ace1 gene encoding a Cys(2)-His(2) transcription factor involved in regulation of activity of the cellulase promoter cbh1 of Trichoderma reesei. J Biol Chem, 2000, 275: 5817-5825.

[91]

Schmoll M. Light, stress, sex and carbon - The photoreceptor ENVOY as a central checkpoint in the physiology of Trichoderma reesei. Fungal Biol, 2018, 122: 479-486.

[92]

Schmoll M, Franchi L, Kubicek CP. Envoy, a PAS/LOV domain protein of Hypocrea jecorina (Anamorph Trichoderma reesei), modulates cellulase gene transcription in response to light. Eukaryot Cell, 2005, 4: 1998-2007.

[93]

Schmoll M, Schuster A, Silva Rdo N, Kubicek CP. The G-alpha protein GNA3 of Hypocrea jecorina (Anamorph Trichoderma reesei) regulates cellulase gene expression in the presence of light. Eukaryot Cell, 2009, 8: 410-420.

[94]

Schuster A, Tisch D, Seidl-Seiboth V, Kubicek CP, Schmoll M. Roles of protein kinase A and adenylate cyclase in light-modulated cellulase regulation in Trichoderma reesei. Appl Environ Microbiol, 2012, 78: 2168-2178.

[95]

Seibel, C., Gremel, G., do Nascimento Silva, R., Schuster, A., Kubicek, C.P., Schmoll, M. 2009. Light-dependent roles of the G-protein α subunit GNA1 of Hypocrea jecorina (anamorph Trichoderma reesei) BMC Biol. 7, 58.

[96]

Seiboth B, Hartl L, Salovuori N, Lanthaler K, Robson GD, Vehmaanperä J, Penttilä ME, Kubicek CP. Role of the bga1-encoded extracellular β-galactosidase of Hypocrea jecorina in cellulase induction by lactose. Appl Environ Microbiol, 2005, 71: 851-857.

[97]

Seiboth B, Gamauf C, Pail M, Hartl L, Kubicek C. The major D-xylose reductase of Hypocrea jecorina is necessary for efficient pentose and lactose catabolism and for cellulase induction by lactose. Mol Microbiol, 2007, 66: 890-900.

[98]

Seiboth B, Karimi RA, Phatale PA, Linke R, Hartl L, Sauer DG, Smith KM, Baker SE, Freitag M, Kubicek CP. The putative protein methyltransferase LAE1 controls cellulase gene expression in Trichoderma reesei. Mol Microbiol, 2012, 84: 1150-1164.

[99]

Shibata N, Kakeshita H, Igarashi K, Takimura Y, Shida Y, Ogasawara W, Koda T, Hasunuma T, Kondo A. Disruption of alpha-tubulin releases carbon catabolite repression and enhances enzyme production in Trichoderma reesei even in the presence of glucose. Biotechnol Biofuels, 2021, 14: 39.

[100]

Shida Y, Yamaguchi K, Nitta M, Nakamura A, Takahashi M, Kidokoro S, Mori K, Tashiro K, Kuhara S, Matsuzawa T, Yaoi K, Sakamoto Y, Tanaka N, Morikawa Y, Ogasawara W. The impact of a single-nucleotide mutation of bgl2 on cellulase induction in a Trichoderma reesei mutant. Biotechnol Biofuels, 2015, 8: 230.

[101]

Shoji JY, Arioka M, Kitamoto K. Dissecting cellular components of the secretory pathway in filamentous fungi: insights into their application for protein production. Biotechnol Lett, 2008, 30: 7-14.

[102]

Sloothaak J, Tamayo-Ramos JA, Odoni DI, Laothanachareon T, Derntl C, Mach-Aigner AR, Martins Dos Santos VAP, Schaap PJ. Identification and functional characterization of novel xylose transporters from the cell factories Aspergillus niger and Trichoderma reesei. Biotechnol Biofuels, 2016, 9: 148.

[103]

Smith KM, Sancar G, Dekhang R, Sullivan CM, Li S, Tag AG, Sancar C, Bredeweg EL, Priest HD, McCormick RF, Thomas TL, Carrington JC, Stajich JE, Bell-Pedersen D, Brunner M, Freitag M. Transcription factors in light and circadian clock signaling networks revealed by genomewide mapping of direct targets for neurospora white collar complex. Eukaryot Cell, 2010, 9: 1549-1556.

[104]

Starr TL, Gonçalves AP, Meshgin N, Glass NL. The major cellulases CBH-1 and CBH-2 of Neurospora crassa rely on distinct ER cargo adaptors for efficient ER-exit. Mol Microbiol, 2018, 107: 229-248.

[105]

Sternberg D, Mandels GR. Induction of cellulolytic enzymes in Trichoderma reesei by sophorose. J Bacteriol, 1979, 139: 761-769.

[106]

Stricker AR, Steiger MG, Mach RL. Xyr1 receives the lactose induction signal and regulates lactose metabolism in Hypocrea jecorina. FEBS Lett, 2007, 581: 3915-3920.

[107]

Sun X, Su X. Harnessing the knowledge of protein secretion for enhanced protein production in filamentous fungi. World J Microbiol Biotechnol, 2019, 35: 54.

[108]

Sun X, Zhang X, Huang H, Wang Y, Tu T, Bai Y, Wang Y, Zhang J, Luo H, Yao B, Su X. Engineering the cbh1 promoter of Trichoderma reesei for enhanced protein production by replacing the binding sites of a transcription repressor ACE1 to those of the activators. J Agric Food Chem, 2020, 68: 1337-1346.

[109]

Tang H, Song M, He Y, Wang J, Wang S, Shen Y, Hou J, Bao X. Engineering vesicle trafficking improves the extracellular activity and surface display efficiency of cellulases in Saccharomyces cerevisiae. Biotechnol Biofuels, 2017, 10: 53.

[110]

Tisch D, Schuster A, Schmoll M. Crossroads between light response and nutrient signalling: ENV1 and PhLP1 act as mutual regulatory pair in Trichoderma reesei. BMC Genomics, 2014, 15: 425.

[111]

Wang M, Zhao Q, Yang J, Jiang B, Wang F, Liu K, Fang X. A mitogen-activated protein kinase Tmk3 participates in high osmolarity resistance, cell wall integrity maintenance and cellulase production regulation in Trichoderma reesei. PLoS ONE, 2013, 8: e72189.

[112]

Wang M, Dong Y, Zhao Q, Wang F, Liu K, Jiang B, Fang X. Identification of the role of a MAP kinase Tmk2 in Hypocrea jecorina (Trichoderma reesei). Sci Rep, 2014, 4: 6732.

[113]

Wang M, Zhang M, Li L, Dong Y, Jiang Y, Liu K, Zhang R, Jiang B, Niu K, Fang X. Role of Trichoderma reesei mitogen-activated protein kinases (MAPKs) in cellulase formation. Biotechnol Biofuels, 2017, 10: 99.

[114]

Wang L, Lv X, Cao Y, Zheng F, Meng X, Shen Y, Chen G, Liu W, Zhang W. A novel transcriptional regulator RXE1 modulates the essential transactivator XYR1 and cellulase gene expression in Trichoderma reesei. Appl Microbiol Biotechnol, 2019, 103: 4511-4523.

[115]

Wang L, Yang R, Cao Y, Zheng F, Meng X, Zhong Y, Chen G, Zhang W, Liu W. CLP1, a novel plant homeo domain protein, participates in regulating cellulase gene expression in the filamentous fungus Trichoderma reesei. Front Microbiol, 2019, 10: 1700.

[116]

Wang Q, Zhong C, Xiao H. Genetic engineering of filamentous fungi for efficient protein expression and secretion. Front Bioeng Biotechnol, 2020, 8: 293.

[117]

Wu Y, Sun X, Xue X, Luo H, Yao B, Xie X, Su X. Overexpressing key component genes of the secretion pathway for enhanced secretion of an Aspergillus niger glucose oxidase in Trichoderma reesei. Enzyme Microb Technol, 2017, 106: 83-87.

[118]

Xin Q, Gong Y, Lv X, Chen G, Liu W. Trichoderma reesei histone acetyltransferase Gcn5 regulates fungal growth, conidiation, and cellulase gene expression. Curr Microbiol, 2013, 67: 580-589.

[119]

Xu J, Zhao G, Kou Y, Zhang W, Zhou Q, Chen G, Liu W. Intracellular β-glucosidases CEL1a and CEL1b are essential for cellulase induction on lactose in Trichoderma reesei. Eukaryot Cell, 2014, 13: 1001-1013.

[120]

Yan S, Xu Y, Yu XW. Rational engineering of xylanase hyper-producing system in Trichoderma reesei for efficient biomass degradation. Biotechnol Biofuels, 2021, 14: 90.

[121]

Yoon J, Aishan T, Maruyama J, Kitamoto K. Enhanced production and secretion of heterologous proteins by the filamentous fungus Aspergillus oryzae via disruption of vacuolar protein sorting receptor gene Aovps10. Appl Environ Microbiol, 2010, 76: 5718-5727.

[122]

Yoon J, Kikuma T, Maruyama J, Kitamoto K. Enhanced production of bovine chymosin by autophagy deficiency in the filamentous fungus Aspergillus oryzae. PLoS ONE, 2013, 8: e62512.

[123]

Zeilinger S, Schmoll M, Pail M, Mach RL, Kubicek CP. Nucleosome transactions on the Hypocrea jecorina (Trichoderma reesei) cellulase promoter cbh2 associated with cellulase induction. Mol Genet Genomics, 2003, 270: 46-55.

[124]

Zhang WX, Kou YB, Xu JT, Cao YL, Zhao GL, Shao J, Wang H, Wang ZX, Bao XM, Chen GJ, Liu WF. Two major facilitator superfamily sugar transporters from Trichoderma reesei and their roles in induction of cellulase biosynthesis. J Biol Chem, 2013, 288: 32861-32872.

[125]

Zhang F, Zhao X, Bai F. Improvement of cellulase production in Trichoderma reesei Rut-C30 by overexpression of a novel regulatory gene Trvib-1. Bioresour Technol, 2018, 247: 676-683.

[126]

Zhang J, Zhang G, Wang W, Wang W, Wei D. Enhanced cellulase production in Trichoderma reesei RUT C30 via constitution of minimal transcriptional activators. Microb Cell Fact, 2018, 17: 75.

[127]

Zhang J, Chen Y, Wu C, Liu P, Wang W, Wei D. The transcription factor ACE3 controls cellulase activities and lactose metabolism via two additional regulators in the fungus Trichoderma reesei. J Biol Chem, 2019, 294: 18435-18450.

[128]

Zhang W, An N, Guo J, Wang Z, Meng X, Liu W. Influences of genetically perturbing synthesis of the typical yellow pigment on conidiation, cell wall integrity, stress tolerance, and cellulase production in Trichoderma reesei. J Microbiol, 2021, 59: 426-434.

[129]

Zhao Q, Liu Q, Wang Q, Qin Y, Zhong Y, Gao L, Liu G, Qu Y. Disruption of the Trichoderma reesei gul1 gene stimulates hyphal branching and reduces broth viscosity in cellulase production. J Ind Microbiol Biotechnol, 2021

[130]

Zheng F, Cao Y, Yang R, Wang L, Lv X, Zhang W, Meng X, Liu W. Trichoderma reesei XYR1 activates cellulase gene expression via interaction with the Mediator subunit TrGAL11 to recruit RNA polymerase II. PLoS Genet, 2020, 16: e1008979.

[131]

Zheng F, Yang R, Cao Y, Zhang W, Lv X, Meng X, Zhong Y, Chen G, Zhou Q, Liu W. Engineering Trichoderma reesei for hyperproduction of cellulases on glucose to efficiently saccharify pretreated corncobs. J Agr Food Chem, 2020, 68: 12671-12682.

[132]

Zhou Q, Xu J, Kou Y, Lv X, Zhang X, Zhao G, Zhang W, Chen G, Liu W. Differential involvement of β-glucosidases from Hypocrea jecorina in rapid induction of cellulase genes by cellulose and cellobiose. Eukaryot Cell, 2012, 11: 1371-1381.

[133]

Zhou B, Wang C, Wang B, Li X, Xiao J, Pan L. Identification of functional cis-elements required for repression of the Taka-amylase A gene under secretion stress in Aspergillus oryzae. Biotechnol Lett, 2015, 37: 333-341.

[134]

Zou G, Jiang Y, Liu R, Zhu Z, Zhou Z. The putative β-glucosidase BGL3I regulates cellulase induction in Trichoderma reesei. Biotechnol Biofuels, 2018, 11: 314.

Funding

National Key Research and Development Program of China(2021YFC2100203)

National Natural Science Foundation of China(32072162)

Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX20_1819)

National First-Class Discipline Program of Light Industry Technology and Engineering(National First-Class Discipline Program of Light Industry Technology)

111Project(111-2-06)

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/