Mutations in adaptively evolved Escherichia coli LGE2 facilitated the cost-effective upgrading of undetoxified bio-oil to bioethanol fuel

Dongdong Chang , Cong Wang , Fabrice Ndayisenga , Zhisheng Yu

Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 105

PDF
Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 105 DOI: 10.1186/s40643-021-00459-2
Research

Mutations in adaptively evolved Escherichia coli LGE2 facilitated the cost-effective upgrading of undetoxified bio-oil to bioethanol fuel

Author information +
History +
PDF

Abstract

Levoglucosan is a promising sugar present in the lignocellulose pyrolysis bio-oil, which is a renewable and environment-friendly source for various value-added productions. Although many microbial catalysts have been engineered to produce biofuels and chemicals from levoglucosan, the demerits that these biocatalysts can only utilize pure levoglucosan while inhibited by the inhibitors co-existing with levoglucosan in the bio-oil have greatly limited the industrial-scale application of these biocatalysts in lignocellulose biorefinery. In this study, the previously engineered Escherichia coli LGE2 was evolved for enhanced inhibitor tolerance using long-term adaptive evolution under the stress of multiple inhibitors and finally, a stable mutant E. coli-H was obtained after ~ 374 generations’ evolution. In the bio-oil media with an extremely acidic pH of 3.1, E. coli-H with high inhibitor tolerance exhibited remarkable levoglucosan consumption and ethanol production abilities comparable to the control, while the growth of the non-evolved strain was completely blocked even when the pH was adjusted to 7.0. Finally, 8.4 g/L ethanol was achieved by E. coli-H in the undetoxified bio-oil media with ~ 2.0% (w/v) levoglucosan, reaching 82% of the theoretical yield. Whole-genome re-sequencing to monitor the acquisition of mutations identified 4 new mutations within the globally regulatory genes rssB, yqhA, and basR, and the − 10 box of the putative promoter of yqhD-dgkA operon. Especially, yqhA was the first time to be revealed as a gene responsible for inhibitor tolerance. The mutations were all responsible for improved fitness, while basR mutation greatly contributed to the fitness improvement of E. coli-H. This study, for the first time, generated an inhibitor-tolerant levoglucosan-utilizing strain that could produce cost-effective bioethanol from the toxic bio-oil without detoxification process, and provided important experimental evidence and valuable genetic/proteinic information for the development of other robust microbial platforms involved in lignocellulose biorefining processes.

Keywords

Levoglucosan / Bioethanol / Escherichia coli / Inhibitor tolerance / Evolution / Whole-genome sequencing

Cite this article

Download citation ▾
Dongdong Chang, Cong Wang, Fabrice Ndayisenga, Zhisheng Yu. Mutations in adaptively evolved Escherichia coli LGE2 facilitated the cost-effective upgrading of undetoxified bio-oil to bioethanol fuel. Bioresources and Bioprocessing, 2021, 8(1): 105 DOI:10.1186/s40643-021-00459-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akbar S, Kang CM, Gaidenko TA, Price CW. Modulator protein RsbR regulates environmental signalling in the general stress pathway of Bacillus subtilis. Mol Microbiol, 1997, 24(3): 567-578.

[2]

Anex RP, Aden A, Kazi FK, Fortman J, Swanson RM, Wright MM, Satrio JA, Brown RC, Daugaard DE, Platon A, Kothandaraman G, Hsu DD, Dutta A. Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel, 2010, 89: S29-S35.

[3]

Arense P, Bernal V, Iborra JL, Cánovas M. Metabolic adaptation of Escherichia coli to long-term exposure to salt stress. Process Biochem, 2010, 45(9): 1459-1467.

[4]

Betts MJ, Russell RB. Amino acid properties and consequences of substitutions, 2003, Chichester: Wiley.

[5]

Carabetta VJ, Mohanty BK, Kushner SR, Silhavy TJ. The response regulator SprE (RssB) modulates polyadenylation and mRNA stability in Escherichia coli. J Bacteriol, 2009, 191(22): 6812-6821.

[6]

Chang D, Yu Z, Islam ZU, Zhang H. Mathematical modeling of the fermentation of acid-hydrolyzed pyrolytic sugars to ethanol by the engineered strain Escherichia coli ACCC 11177. Appl Microbiol Biotechnol, 2015, 99(9): 4093-4105.

[7]

Chang D, Islam ZU, Yang Z, Thompson IP, Yu Z. Conversion efficiency of bioethanol from levoglucosan was improved by the newly engineered Escherichia coli. Environ Prog Sustain Energy, 2021

[8]

Chen Y, Boggess EE, Ocasio ER, Warner A, Kerns L, Drapal V, Gossling C, Ross W, Gourse RL, Shao Z, Dickerson J, Mansell TJ, Jarboe LR. Reverse engineering of fatty acid-tolerant Escherichia coli identifies design strategies for robust microbial cell factories. Metab Eng, 2020, 61: 120-130.

[9]

Chi Z, Rover M, Jun E, Deaton M, Johnston P, Brown RC, Wen Z, Jarboe LR. Overliming detoxification of pyrolytic sugar syrup for direct fermentation of levoglucosan to ethanol. Bioresour Technol, 2013, 150: 220-227.

[10]

Choi SY, Gong G, Park HS, Um Y, Sim SJ, Woo HM. Extreme furfural tolerance of a soil bacterium Enterobacter cloacae GGT036. J Biotechnol, 2015, 193: 11-13.

[11]

Dai J, Yu Z, He Y, Zhang L, Bai Z, Dong Z, Du Y, Zhang H. Cloning of a novel levoglucosan kinase gene from Lipomyces starkeyi and its expression in Escherichia coli. World J Microb Biot, 2009, 25(9): 1589-1595.

[12]

Dettman JR, Rodrigue N, Melnyk AH, Wong A, Bailey SF, Kassen R. Evolutionary insight from whole-genome sequencing of experimentally evolved microbes. Mol Ecol, 2012, 21(9): 2058-2077.

[13]

Duarte LC, Carvalheiro F, Neves I, Gírio F. Effects of aliphatic acids, furfural, and phenolic compounds on Debaryomyces hansenii CCMI 941. Appl Biochem Biotechnol, 2005, 121(1–3): 413-425.

[14]

Fontaine F, Stewart EJ, Lindner AB, Taddei F. Mutations in two global regulators lower individual mortality in Escherichia coli. Mol Microbiol, 2008, 67(1): 2-14.

[15]

Foster JW. Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol, 2004, 2(11): 898-907.

[16]

Frazao CR, Maton V, Francois JM, Walther T. Development of a metabolite sensor for high-throughput detection of aldehydes in Escherichia Coli. Front Bioeng Biotechnol, 2018, 6: 118.

[17]

Goodson M, Rowbury RJ. Habituation to normally lethal acidity by prior growth of Escherichia coli at a sub-lethal acid pH value. Lett Appl Microbiol, 2010, 8(2): 77-79.

[18]

Hagiwara D, Yamashino T, Mizuno T. A Genome-wide view of the Escherichia coli BasS-BasR two-component system implicated in iron-responses. Biosci Biotechnol Biochem, 2004, 68(8): 1758-1767.

[19]

Henry CS, Overbeek R, Xia F, Best AA, Glass E, Gilbert J, Larsen P, Edwards R, Disz T, Meyer F, Vonstein V, De Jongh M, Bartels D, Desai N, D’Souza M, Devoid S, Keegan KP, Olson R, Wilke A, Wilkening J, Stevens RL. Connecting genotype to phenotype in the era of high-throughput sequencing. Biochim Et Biophys Acta (BBA) General Subjects, 2011, 1810(10): 967-977.

[20]

Herring CD, Raghunathan A, Honisch C, Patel T, Applebee MK, Joyce AR, Albert TJ, Blattner FR, van den Boom D, Cantor CR, Palsson BO. Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale. Nat Genet, 2006, 38(12): 1406-1412.

[21]

Islam ZU, Zhisheng Y, el Hassan B, Dongdong C, Hongxun Z. Microbial conversion of pyrolytic products to biofuels: a novel and sustainable approach toward second-generation biofuels. J Ind Microbiol Biotechnol, 2015, 42(12): 1557-1579.

[22]

Itabaiana Junior I, Avelar do Nascimento M, de Souza ROMA, Dufour A, Wojcieszak R. Levoglucosan: a promising platform molecule?. Green Chem, 2020, 22(18): 5859-5880.

[23]

Janssen AB, Bartholomew TL, Marciszewska NP, Bonten MJM, Willems RJL, Bengoechea JA, van Schaik W. Nonclonal emergence of colistin resistance associated with mutations in the BasRS two-component system in Escherichia coli bloodstream isolates. mSphere, 2020

[24]

Jin C, Hou W, Yao R, Zhou P, Zhang H, Bao J. Adaptive evolution of Gluconobacter oxydans accelerates the conversion rate of non-glucose sugars derived from lignocellulose biomass. Bioresour Technol, 2019, 289.

[25]

Kim EM, Um Y, Bott M, Woo HM. Engineering of Corynebacterium glutamicum for growth and succinate production from levoglucosan, a pyrolytic sugar substrate. FEMS Microbiol Lett, 2015, 362(19): fnv161.

[26]

Kurosawa K, Laser J, Sinskey AJ. Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors. Biotechnol Biofuels, 2015, 8: 76.

[27]

Layton DS, Ajjarapu A, Choi DW, Jarboe LR. Engineering ethanologenic Escherichia coli for levoglucosan utilization. Bioresour Technol, 2011, 102(17): 8318-8322.

[28]

Lee C, Kim I, Lee J, Lee K-L, Min B, Park C. Transcriptional activation of the aldehyde reductase YqhD by YqhC and its implication in glyoxal metabolism of Escherichia coli K-12. J Bacteriol, 2010, 192(16): 4205-4214.

[29]

Li W-C, Zhu J-Q, Zhao X, Qin L, Xu T, Zhou X, Li X, Li B-Z, Yuan Y-J. Improving co-fermentation of glucose and xylose by adaptive evolution of engineering xylose-fermenting Saccharomyces cerevisiae and different fermentation strategies. Renew Energ, 2019, 139: 1176-1183.

[30]

Linger JG, Hobdey SE, Franden MA, Fulk EM, Beckham GT. Conversion of levoglucosan and cellobiosan by Pseudomonas putida KT2440. Metab Eng Commun, 2016, 3: 24-29.

[31]

Liu J, Jiang Y, Chen J, Yang J, Jiang W, Zhuang W, Ying H, Yang S. Metabolic engineering and adaptive evolution of Clostridium beijerinckii to increase solvent production from corn stover hydrolysate. J Agric Food Chem, 2020, 68(30): 7916-7925.

[32]

Madigou C, Poirier S, Bureau C, Chapleur O. Acclimation strategy to increase phenol tolerance of an anaerobic microbiota. Bioresour Technol, 2016, 216: 77-86.

[33]

Maeda T, Iwasawa J, Kotani H, Sakata N, Kawada M, Horinouchi T, Sakai A, Tanabe K, Furusawa C. High-throughput laboratory evolution reveals evolutionary constraints in Escherichia coli. Nat Commun, 2020, 11(1): 5970.

[34]

Martinez A, Rodriguez ME, York SW, Preston JF, Ingram LO. Effects of Ca(OH)2 treatments ("overliming") on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnol Bioeng, 2000, 69(5): 526-536.

[35]

Mat Aron NS, Khoo KS, Chew KW, Show PL, Chen WH, Nguyen THP. Sustainability of the four generations of biofuels—a review. Int J Energ Res, 2020, 44(12): 9266-9282.

[36]

Merchel Piovesan Pereira B, Adil Salim M, Rai N, Tagkopoulos I. Tolerance to glutaraldehyde in Escherichia coli mediated by overexpression of the aldehyde reductase YqhD by YqhC. Front Microbiol, 2021, 12.

[37]

Miller EN, Jarboe LR, Turner PC, Pharkya P, Yomano LP, York SW, Nunn D, Shanmugam KT, Ingram LO. Furfural inhibits growth by limiting sulfur assimilation in ethanologenic Escherichia coli strain LY180. Appl Environ Microbiol, 2009, 75(19): 6132-6141.

[38]

Miller EN, Jarboe LR, Yomano LP, York SW, Shanmugam KT, Ingram LO. Silencing of NADPH-dependent oxidoreductase genes (yqhD and dkgA) in furfural-resistant ethanologenic Escherichia coli. Appl Environ Microbiol, 2009, 75(13): 4315.

[39]

Mills TY, Sandoval NR, Gill RT. Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol Biofuels, 2009, 2: 26.

[40]

Milne T, Agblevor F, Davis M, Deutch S, Johnson D. A review of the chemical composition of fast-pyrolysis oils from biomass, 1997, Dordrecht: Springer

[41]

Minty JJ, Lesnefsky AA, Lin F, Chen Y, Zaroff TA, Veloso AB, Xie B, McConnell CA, Ward RJ, Schwartz DR. Evolution combined with genomic study elucidates genetic bases of isobutanol tolerance in Escherichia coli. Microb Cell Fact, 2011, 10(1): 1-38.

[42]

Nielsen F, Tomas-Pejo E, Olsson L, Wallberg O. Short-term adaptation during propagation improves the performance of xylose-fermenting Saccharomyces cerevisiae in simultaneous saccharification and co-fermentation. Biotechnol Biofuels, 2015, 8: 219.

[43]

Ogasawara H, Shinohara S, Yamamoto K, Ishihama A. Novel regulation targets of the metal-response BasS-BasR two-component system of Escherichia coli. Microbiology, 2012, 158(Pt 6): 1482-1492.

[44]

Otero JM, Vongsangnak W, Asadollahi MA, Olivares-Hernandes R, Maury J, Farinelli L, Barlocher L, Osteras M, Schalk M, Clark A, Nielsen J. Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications. BMC Genomics, 2010, 11: 723.

[45]

Pattrick CA, Webb JP, Green J, Chaudhuri RR, Collins MO, Kelly DJ. Proteomic profiling, transcription factor modeling, and genomics of evolved tolerant strains elucidate mechanisms of vanillin toxicity in Escherichia coli. mSystems, 2019

[46]

Pérez JM, Arenas FA, Pradenas GA, Sandoval JM, Vásquez CC. Escherichia coli YqhD exhibits aldehyde reductase activity and protects from the harmful effect of lipid peroxidation-derived aldehydes. J Biol Chem, 2008, 283(12): 7346-7353.

[47]

Rajaraman E, Agrawal A, Crigler J, Seipelt-Thiemann R, Altman E, Eiteman MA. Transcriptional analysis and adaptive evolution of Escherichia coli strains growing on acetate. Appl Microbiol Biotechnol, 2016, 100(17): 7777-7785.

[48]

Rover MR, Johnston PA, Jin T, Smith RG, Brown RC, Jarboe L. Production of clean pyrolytic sugars for fermentation. Chemsuschem, 2014, 7(6): 1662-1668.

[49]

Rubin EJ, Herrera CM, Crofts AA, Trent MS. PmrD is required for modifications to Escherichia coli endotoxin that promote antimicrobial resistance. Antimicrob Agents Ch, 2015, 59(4): 2051-2061.

[50]

Sasano Y, Watanabe D, Ukibe K, Inai T, Ohtsu I, Shimoi H, Takagi H. Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production. J Biosci Bioeng, 2012, 113(4): 451-455.

[51]

Shah SSM, Luthfi AAI, Jahim JM, Harun S, Low KO. An improvement in fermentability of acid-hydrolysed hemicellulose from kenaf stem for xylitol production. Int J Food Eng, 2020

[52]

Thorwall S, Schwartz C, Chartron JW, Wheeldon I. Stress-tolerant non-conventional microbes enable next-generation chemical biosynthesis. Nat Chem Biol, 2020, 16(2): 113-121.

[53]

Trent MS, Ribeiro AA, Doerrler WT, Lin S, Cotter RJ, Raetz CRJ. Accumulation of a polyisoprene-linked amino sugar in polymyxin-resistant Salmonella typhimurium and Escherichia coli: structural characterization and transfer to lipid A in the periplasm. J Biol Chem, 2001, 276(46): 43132-43144.

[54]

Turner PC, Miller EN, Jarboe LR, Baggett CL, Shanmugam KT, Ingram LO. YqhC regulates transcription of the adjacent Escherichia coli genes yqhD and dkgA that are involved in furfural tolerance. J Ind Microbiol Biotechnol, 2011, 38(3): 431-439.

[55]

Wang X, Miller EN, Yomano LP, Zhang X, Shanmugam KT, Ingram LO. Increased furfural tolerance due to overexpression of NADH-dependent oxidoreductase FucO in Escherichia coli strains engineered for the production of ethanol and lactate. Appl Environ Microbiol, 2011, 77(15): 5132-5140.

[56]

Wang X, Yomano LP, Lee JY, York SW, Zheng H, Mullinnix MT, Shanmugam KT, Ingram LO. Engineering furfural tolerance in Escherichia coli improves the fermentation of lignocellulosic sugars into renewable chemicals. Proc Natl Acad Sci U S A, 2013, 110(10): 4021-4026.

[57]

Wang X, Khushk I, Xiao Y, Gao Q, Bao J. Tolerance improvement of Corynebacterium glutamicum on lignocellulose derived inhibitors by adaptive evolution. Appl Microbiol Biotechnol, 2018, 102(1): 377-388.

[58]

Wang B, Xu J, Gao J, Fu X, Han H, Li Z, Wang L, Tian Y, Peng R, Yao Q. Construction of an Escherichia coli strain to degrade phenol completely with two modified metabolic modules. J Hazard Mater, 2019, 373: 29-38.

[59]

Xiong X, Lian J, Yu X, Garcia-Perez M, Chen S. Engineering levoglucosan metabolic pathway in Rhodococcus jostii RHA1 for lipid production. J Ind Microbiol Biotechnol, 2016, 43(11): 1551-1560.

[60]

Xu Y, Zhao Z, Tong W, Ding Y, Liu B, Shi Y, Wang J, Sun S, Liu M, Wang Y, Qi Q, Xian M, Zhao G. An acid-tolerance response system protecting exponentially growing Escherichia coli. Nat Commun, 2020, 11(1): 1496.

[61]

Yan Z, Zhang J, Bao J. Increasing cellulosic ethanol production by enhancing phenolic tolerance of Zymomonas mobilis in adaptive evolution. Bioresour Technol, 2021, 329.

[62]

Zhang DF, Li H, Lin XM, Wang SY, Peng XX. Characterization of outer membrane proteins of Escherichia coli in response to phenol stress. Curr Microbiol, 2011, 62(3): 777-783.

[63]

Zhao C, Sinumvayo JP, Zhang Y, Li Y. Design and development of a "Y-shaped" microbial consortium capable of simultaneously utilizing biomass sugars for efficient production of butanol. Metab Eng, 2019, 55: 111-119.

Funding

National Natural Science Foundation of China(21978287)

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/