PDF
Abstract
5-Aminolevulinic acid (5-ALA), a non-proteinogenic five-carbon amino acid, has received intensive attentions in medicine due to its approval by the US Food and Drug Administration (FDA) for cancer diagnosis and treatment as photodynamic therapy. As chemical synthesis of 5-ALA performed low yield, complicated processes, and high cost, biosynthesis of 5-ALA via C4 (also called Shemin pathway) and C5 pathway related to heme biosynthesis in microorganism equipped more advantages. In C4 pathway, 5-ALA is derived from condensation of succinyl-CoA and glycine by 5-aminolevulic acid synthase (ALAS) with pyridoxal phosphate (PLP) as co-factor in one-step biotransformation. The C5 pathway involves three enzymes comprising glutamyl-tRNA synthetase (GltX), glutamyl-tRNA reductase (HemA), and glutamate-1-semialdehyde aminotransferase (HemL) from α-ketoglutarate in TCA cycle to 5-ALA and heme. In this review, we describe the recent results of 5-ALA production from different genes and microorganisms via genetic and metabolic engineering approaches. The regulation of different chassis is fine-tuned by applying synthetic biology and boosts 5-ALA production eventually. The purification process, challenges, and opportunities of 5-ALA for industrial applications are also summarized.
Keywords
5-aminolevulinic acid
/
Heme
/
Bioprocessing, metabolic engineering
/
C4 and C5 pathway
/
Photodynamic therapy
Cite this article
Download citation ▾
Ying-Chen Yi, I-Tai Shih, Tzu-Hsuan Yu, Yen-Ju Lee, I-Son Ng.
Challenges and opportunities of bioprocessing 5-aminolevulinic acid using genetic and metabolic engineering: a critical review.
Bioresources and Bioprocessing, 2021, 8(1): 100 DOI:10.1186/s40643-021-00455-6
| [1] |
Aiguo Z, Meizhi Z. Production of 5-aminolevulinic acid from glutamate by overexpressing HemA1 and pgr7 from Arabidopsis thaliana in Escherichia coli. World J Microbiol Biotechnol, 2019, 35: 175.
|
| [2] |
Amos-Tautua BM, Songca SP, Oluwafemi OS. Application of porphyrins in antibacterial photodynamic therapy. Molecules, 2019, 24: 2456.
|
| [3] |
Angov E. Codon usage: nature's roadmap to expression and folding of proteins. Biotechnol J, 2011, 6: 650-659.
|
| [4] |
Anné J, Vrancken K, Van Mellaert L, Van Impe J, Bernaerts K. Protein secretion biotechnology in Gram-positive bacteria with special emphasis on Streptomyces lividans. Biochim Biophys Acta Mol Cell Res, 2014, 1843: 1750-1761.
|
| [5] |
Beale SI. The biosynthesis of δ-aminolevulinic acid in Chlorella. Plant Physiol, 1970, 45: 504-506.
|
| [6] |
Bunke A, Zerbe O, Schmid H, Burmeister G, Merkle HP, Gander B. Degradation mechanism and stability of 5-aminolevulinic acid. J Pharm Sci, 2000, 89: 1335-1341.
|
| [7] |
Burgess-Brown NA, Sharma S, Sobott F, Loenarz C, Oppermann U, Gileadi O. Codon optimization can improve expression of human genes in Escherichia coli: a multi-gene study. Protein Expr Purif, 2008, 59: 94-102.
|
| [8] |
Chen J, Wang Y, Guo X, Rao D, Zhou W, Zheng P, . Efficient bioproduction of 5-aminolevulinic acid, a promising biostimulant and nutrient, from renewable bioresources by engineered Corynebacterium glutamicum. Biotechnol Biofuels, 2020, 13: 1-13.
|
| [9] |
Cheng F, Wang J, Song Z, Cheng JE, Zhang D, Liu Y. Nematicidal effects of 5-aminolevulinic acid on plant-parasitic nematodes. J Nematol, 2017, 49: 295.
|
| [10] |
Cho SW, Yim J, Seo SW. Engineering tools for the development of recombinant lactic acid bacteria. Biotechnol J, 2020, 15: e1900344.
|
| [11] |
Choi C, Hong BS, Sung HC, Lee HS, Kim JH. Optimization of extracellular 5-aminolevulinic acid production from Escherichia coli transformed with ALA synthase gene of Bradyrhizobium japonicum. Biotechnol Lett, 1999, 21: 551-554.
|
| [12] |
Choi HP, Lee YM, Yun CW, Sung HC. Extracellular 5-aminolevulinic acid production by Escherichia coli containing the Rhodopseudomonas palustris KUGB306 hemA gene. J Microbiol Biotechnol, 2008, 18: 1136-1140.
|
| [13] |
Chung SY, Seo KH, Rhee JI. Influence of culture conditions on the production of extra-cellular 5-aminolevulinic acid (ALA) by recombinant E. coli. Process Biochem, 2005, 40: 385-394.
|
| [14] |
Cui Z, Jiang Z, Zhang J, Zheng H, Jiang X, Gong K, . Stable and efficient biosynthesis of 5-aminolevulinic acid using plasmid-free Escherichia coli. J Agric Food Chem, 2019, 67: 1478-1483.
|
| [15] |
de Marco A, Deuerling E, Mogk A, Tomoyasu T, Bukau B. Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli. BMC Biotechnol, 2007, 7: 32.
|
| [16] |
Diesveld R, Tietze N, Fürst O, Reth A, Bathe B, Sahm H, Eggeling L. Activity of exporters of Escherichia coli in Corynebacterium glutamicum, and their use to increase L-threonine production. J Mol Microbiol Biotechnol, 2009, 16: 198-207.
|
| [17] |
Ding W, Weng H, Du G, Chen J, Kang Z. 5-Aminolevulinic acid production from inexpensive glucose by engineering the C4 pathway in Escherichia coli. J Ind Microbiol Biotechnol, 2017, 44: 1127-1135.
|
| [18] |
Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer, 2003, 3: 380-387.
|
| [19] |
Effendi SSW, Tan SI, Chang CH, Chen CY, Chang JS, Ng IS. Development and fabrication of disease resistance protein in recombinant Escherichia coli. Bioresour Bioprocess, 2020, 7: 1-10.
|
| [20] |
Erskine PT, Norton E, Cooper JB, Lambert R, Coker A, Lewis G, . X-ray structure of 5-aminolevulinic acid dehydratase from Escherichia coli complexed with the inhibitor levulinic acid at 2.0 Å resolution. Biochemistry, 1999, 38: 4266-4276.
|
| [21] |
Farid M, Ali S, Rizwan M, Ali Q, Saeed R, Nasir T, . Phyto-management of chromium contaminated soils through sunflower under exogenously applied 5-aminolevulinic acid. Ecotoxicol Environ Saf, 2018, 151: 255-265.
|
| [22] |
Feng L, Zhang Y, Fu J, Mao Y, Chen T, Zhao X, Wang Z. Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid. Biotechnol Bioeng, 2016, 113: 1284-1293.
|
| [23] |
Fu W, Lin J, Cen P. 5-Aminolevulinate production with recombinant Escherichia coli using a rare codon optimizer host strain. Appl Microbiol Biotechnol, 2007, 75: 777-782.
|
| [24] |
Fu W, Lin J, Cen P. Expression of a hemA gene from Agrobacterium radiobacter in a rare codon optimizing Escherichia coli for improving 5-aminolevulinate production. Appl Biochem Biotechnol, 2010, 160: 456-466.
|
| [25] |
Fuglsang A. Codon optimizer: a freeware tool for codon optimization. Protein Expr Purif, 2003, 31: 247-249.
|
| [26] |
Gadmar ØB, Moan J, Scheie E, Ma LW, Peng Q. The stability of 5-aminolevulinic acid in solution. J Photochem Photobiol B, 2002, 67: 187-193.
|
| [27] |
Hara KY, Saito M, Kato H, Morikawa K, Kikukawa H, Nomura H, . 5-Aminolevulinic acid fermentation using engineered Saccharomyces cerevisiae. Microb Cell Fact, 2019, 18: 1-8.
|
| [28] |
Hayer-Hartl M, Bracher A, Hartl FU. The GroEL–GroES chaperonin machine: a nano-cage for protein folding. Trends Biochem Sci, 2016, 41: 62-76.
|
| [29] |
Hoppe M, Brün B, Larsson MP, Moraeus L, Hulthén L. Heme iron-based dietary intervention for improvement of iron status in young women. Nutr, 2013, 29: 89-95.
|
| [30] |
Hotta Y, Tanaka T, Takaoka H, Takeuchi Y, Konnai M. Promotive effects of 5-aminolevulinic acid on the yield of several crops. Plant Growth Regul, 1997, 22: 109-114.
|
| [31] |
Huang DD, Wang WY. Chlorophyll biosynthesis in Chlamydomonas starts with the formation of glutamyl-tRNA. Int J Biol Chem, 1986, 261: 13451-13455.
|
| [32] |
Jahn D, Verkamp E, So D. Glutamyl-transfer RNA:a precursor of heme and chlorophyll biosynthesis. Trends Biochem Sci, 1992, 17: 215-218.
|
| [33] |
Jones JA, Toparlak ÖD, Koffas MA. Metabolic pathway balancing and its role in the production of biofuels and chemicals. Curr Opin Biotechnol, 2015, 33: 52-59.
|
| [34] |
Jung S, Yang K, Lee DE, Back K. Expression of Bradyrhizobium japonicum 5-aminolevulinic acid synthase induces severe photodynamic damage in transgenic rice. Plant Sci, 2004, 167: 789-795.
|
| [35] |
Kane JF. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr Opin Biotechnol, 1995, 6: 494-500.
|
| [36] |
Kang DK, Kim SS, Chi WJ, Hong SK, Kim HK, Kim HU. Cloning and expression of the Rhodobacter capsulatus hemA gene in E. coli for the production of 5-aminolevulinic acid. J Microbiol Biotechnol, 2004, 14: 1327-1332.
|
| [37] |
Kang Z, Wang Y, Gu P, Wang Q, Qi Q. Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose. Metab Eng, 2011, 13: 492-498.
|
| [38] |
Kang Z, Wang Y, Wang Q, Qi Q. Metabolic engineering to improve 5-aminolevulinic acid production. Bioeng Bugs, 2011, 2: 342-345.
|
| [39] |
Kang Z, Ding W, Gong X, Liu Q, Du G, Chen J. Recent advances in production of 5-aminolevulinic acid using biological strategies. World J Microbiol Biotechnol, 2017, 33: 200.
|
| [40] |
Kennedy J, Pottier RH, Pross DC. Photodynamic therapy with endogenous protoporphyrin: IX: basic principles and present clinical experience. J Photochem Photobiol B, 1990, 6: 143-148.
|
| [41] |
Ko YJ, You SK, Kim M, Lee E, Shin SK, Park HM, . Enhanced production of 5-aminolevulinic acid via flux redistribution of tca cycle toward L-glutamate in Corynebacterium glutamicum. Biotechnol Bioprocess Eng, 2019, 24: 915-923.
|
| [42] |
Krieg RC, Messmann H, Rauch J, Seeger S, Knuechel R. Metabolic characterization of tumor cell–specific protoporphyrin IX accumulation after exposure to 5-aminolevulinic acid in human colonic cells. Photochem Photobiol, 2002, 76: 518-525.
|
| [43] |
Kwon SJ, De Boer AL, Petri R, Schmidt-Dannert C. High-level production of porphyrins in metabolically engineered Escherichia coli: systematic extension of a pathway assembled from overexpressed genes involved in heme biosynthesis. Appl Environ Microbiol, 2003, 69: 4875-4883.
|
| [44] |
Li JM, Russell CS, Cosloy SD. Cloning and structure of the hemA gene of Escherichia coli K-12. Gene, 1989, 82: 209-217.
|
| [45] |
Li F, Wang Y, Gong K, Wang Q, Liang Q, Qi Q. Constitutive expression of RyhB regulates the heme biosynthesis pathway and increases the 5-aminolevulinic acid accumulation in Escherichia coli. FEMS Microbiol Lett, 2014, 350: 209-215.
|
| [46] |
Li T, Guo YY, Qiao GQ, Chen GQ. Microbial synthesis of 5-aminolevulinic acid and its coproduction with polyhydroxybutyrate. ACS Synth Biol, 2016, 5: 1264-1274.
|
| [47] |
Lin J, Fu W, Cen P. Characterization of 5-aminolevulinate synthase from Agrobacterium radiobacter, screening new inhibitors for 5-aminolevulinate dehydratase from Escherichia coli and their potential use for high 5-aminolevulinate production. Bioresour Technol, 2009, 100: 2293-2297.
|
| [48] |
Lin J, Lou J, Cen P (2014) Crystallization method of 5-aminolevulinic acid phosphate. CN103265444B, 5 November 2014.
|
| [49] |
Liu D, Wu L, Naeem MS, Liu H, Deng X, Xu L, . 5-Aminolevulinic acid enhances photosynthetic gas exchange, chlorophyll fluorescence and antioxidant system in oilseed rape under drought stress. Acta Physiol Plant, 2013, 35: 2747-2759.
|
| [50] |
Liu S, Zhang G, Li X, Zhang J. Microbial production and applications of 5-aminolevulinic acid. Appl Microbiol Biotechnol, 2014, 98: 7349-7357.
|
| [51] |
Liu S, Li X, Zhang G, Zhang J. Optimization of influencing factors on biomass accumulation and 5-aminolevulinic acid (ALA) yield in Rhodobacter sphaeroides wastewater treatment. J Microbiol Biotechnol, 2015, 25: 1920-1927.
|
| [52] |
Liu S, Zhang G, Li J, Li X, Zhang J. Effects of metal ions on biomass and 5-aminolevulinic acid production in Rhodopseudomonas palustris wastewater treatment. Water Sci Technol, 2016, 73: 382-388.
|
| [53] |
Liu S, Zheng Z, Tie J, Kang J, Zhang G, Zhang J. Impacts of Fe2+ on 5-aminolevulinic acid (ALA) biosynthesis of Rhodobacter sphaeroides in wastewater treatment by regulating nif gene expression. Res J Environ Sci, 2018, 70: 11-19.
|
| [54] |
Liu J, Ye Z, Wu H, Liu J, Gong Y (2020) Overexpression of hemA and hemL in Bacillus subtilis promotes overexpression of 5-aminolevulinic acid. Indian J Anim Res 54.
|
| [55] |
Lou JW, Zhu L, Wu MB, Yang LR, Lin JP, Cen PL. High-level soluble expression of the hemA gene from Rhodobacter capsulatus and comparative study of its enzymatic properties. J Zhejiang Univ Sci B, 2014, 15: 491-499.
|
| [56] |
Lüer C, Schauer S, Möbius K, Schulze J, Schubert WD, Heinz DW, . Complex formation between glutamyl-tRNA reductase and glutamate-1-semialdehyde 2, 1-aminomutase in Escherichia coli during the initial reactions of porphyrin biosynthesis. Int J Biol Chem, 2005, 280: 18568-18572.
|
| [57] |
Malik Z, Lugaci H. Destruction of erythroleukaemic cells by photoactivation of endogenous porphyrins. Br J Cancer, 1987, 56: 589.
|
| [58] |
Mao Y, Chen Z, Lu L, Jin B, Ma H, Pan Y, Chen T. Efficient solid-state fermentation for the production of 5-aminolevulinic acid enriched feed using recombinant Saccharomyces cerevisiae. J Biotechnol, 2020, 322: 29-32.
|
| [59] |
Martens JH, Barg H, Warren MA, Jahn D. Microbial production of vitamin B12. Appl Microbiol Biotechnol, 2002, 58: 275-285.
|
| [60] |
Mayfield JA, Dehner CA, DuBois JL. Recent advances in bacterial heme protein biochemistry. Curr Opin Chem Biol, 2011, 15: 260-266.
|
| [61] |
McNicholas PM, Javor G, Darie S, Gunsalus RP. Expression of the heme biosynthetic pathway genes hemCD, hemH, hemM and hemA of Escherichia coli. FEMS Microbiol Lett, 1997, 146: 143-148.
|
| [62] |
Meierhofer C, Silic K, Urban MV, Tanew A, Radakovic S. The impact of occlusive vs non-occlusive application of 5-aminolevulinic acid (BF-200 ALA) on the efficacy and tolerability of photodynamic therapy for actinic keratosis on the scalp and face: a prospective within-patient comparison trial. Photodermatol Photoimmunol Photomed, 2021, 37: 56-62.
|
| [63] |
Meng Q, Zhang Y, Ma C, Ma H, Zhao X, Chen T. Purification and functional characterization of thermostable 5-aminolevulinic acid synthases. Biotechnol Lett, 2015, 37: 2247-2253.
|
| [64] |
Menzella HG. Comparison of two codon optimization strategies to enhance recombinant protein production in Escherichia coli. Microb Cell Fact, 2011, 10: 15.
|
| [65] |
Miscevic D, Mao JY, Kefale T, Abedi D, Moo-Young M, Chou CP. Strain engineering for high-level 5-aminolevulinic acid production in Escherichia coli. Biotechnol Bioeng, 2020
|
| [66] |
Naeem MS, Warusawitharana H, Liu H, Liu D, Ahmad R, Waraich EA, . 5-Aminolevulinic acid alleviates the salinity-induced changes in Brassica napus as revealed by the ultrastructural study of chloroplast. Plant Physiol Biochem, 2012, 57: 84-92.
|
| [67] |
Nakakuki M, Yamauchi K, Hayashi N, Kikuchi G. Purification and some properties of delta-aminolevulinate synthase from the rat liver cytosol fraction and immunochemical identity of the cytosolic enzyme and the mitochondrial enzyme. J Biol Chem, 1980, 255: 1738-1745.
|
| [68] |
Nandi DL, Baker-Cohen KF, Shemin D. δ-Aminolevulinic acid dehydratase of Rhodopseudomonas spheroides I. Isolation and properties. Int J Biol Chem, 1968, 243: 1224-1230.
|
| [69] |
Noh MH, Lim HG, Park S, Seo SW, Jung GY. Precise flux redistribution to glyoxylate cycle for 5-aminolevulinic acid production in Escherichia coli. Metab Eng, 2017, 43: 1-8.
|
| [70] |
Nordmann NJ, Michael AP. 5-Aminolevulinic acid radiodynamic therapy for treatment of high-grade gliomas: systematic review. Clin Neurol Neurosurg., 2020, 201: 106430.
|
| [71] |
Okada H, Tanaka T, Nomura T (2016) Process for producing 5-aminolevulinic acid hydrochloride. EP1927586B1, 27 April 2016.
|
| [72] |
Ong PY, Lee CT, Sarmidi MR, Awad HM, Chua LS, Razali F. Production of extracellular 5-aminolevulinic acid by Rhodopseudomonas palustris in solid-state fermentation. Developments in sustainable chemical and bioprocess technology, 2013, Boston: Springer, 173-179.
|
| [73] |
Peng Q, Warloe T, Berg K, Moan J, Kongshaug M, Giercksky KE, Nesland JM. 5-Aminolevulinic acid-based photodynamic therapy: clinical research and future challenges. Cancer, 1997, 79: 2282-2308.
|
| [74] |
Peng Q, Berg K, Moan J, Kongshaug M, Nesland JM. 5-Aminolevulinic acid-based photodynamic therapy: principles and experimental research. Photochem Photobiol, 1997, 65: 235-251.
|
| [75] |
Ramzi AB, Hyeon JE, Kim SW, Park C, Han SO. 5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway. Enzyme Microb Technol, 2015, 81: 1-7.
|
| [76] |
Sasaki K, Watanabe M, Tanaka T. Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl Microbiol Biotechnol, 2002, 58: 23-29.
|
| [77] |
Sasikala C, Ramana CV, Rao PR. 5-aminolevulinic acid: a potential herbicide/insecticide from microorganisms. Biotechnol Prog, 1994, 10: 451-459.
|
| [78] |
Sato K, Ishida K, Mutsushika O, Shimizu S. Purification and some properties of δ-aminolevulinic acid synthases from Protaminobacter ruber and Rhodopseudomonas spheroides. Agric Biol Chem, 1985, 49: 3415-3421.
|
| [79] |
Schauer S, Chaturvedi S, Randau L, Moser J, Kitabatake M, Lorenz S, . Escherichia coli glutamyl-tRNA reductase trapping the thioester intermediate. Int J Biol Chem, 2002, 277: 48657-48663.
|
| [80] |
Schneegurt MA, Beale SI. Characterization of the RNA required for biosynthesis of δ-aminolevulinic acid from glutamate: purification by anticodon-based affinity chromatography and determination that the UUC glutamate anticodon is a general requirement for function in ALA biosynthesis. Plant Physiol, 1988, 86: 497-504.
|
| [81] |
Shih IT, Yi YC, Ng IS. Plasmid-Free System and modular design for efficient 5-aminolevulinic acid production by engineered Escherichia coli. Appl Biochem Biotechnol, 2021, 193: 1-14.
|
| [82] |
Shinoda Y, Kato D, Ando R, Endo H, Takahashi T, Tsuneoka Y, Fujiwara Y. Systematic review and meta-analysis of in vitro anti-human cancer experiments investigating the use of 5-aminolevulinic acid (5-ALA) for photodynamic therapy. Pharmaceuticals, 2021, 14: 229.
|
| [83] |
Sørensen HP, Mortensen KK. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol, 2005, 115: 113-128.
|
| [84] |
Stojanovski BM, Ferreira GC. Asn-150 of murine erythroid 5-aminolevulinate synthase modulates the catalytic balance between the rates of the reversible reaction. J Biol Chem, 2015, 290: 30750-30761.
|
| [85] |
Stojanovski BM, Hunter GA, Jahn M, Jahn D, Ferreira GC. Unstable reaction intermediates and hysteresis during the catalytic cycle of 5-aminolevulinate synthase implications from using pseudo and alternate substrates and a promiscuous enzyme variant. J Biol Chem, 2014, 289: 22915-22925.
|
| [86] |
Su T, Guo Q, Zheng Y, Liang Q, Wang Q, Qi Q. Fine-tuning of hemB using CRISPRi for increasing 5-aminolevulinic acid production in Escherichia coli. Front Microbiol, 2019, 10: 1731.
|
| [87] |
Tan SI, Ng IS. Stepwise optimization of genetic RuBisCO-equipped Escherichia coli for low carbon-footprint protein and chemical production. Green Chem, 2021
|
| [88] |
Tan SI, You SC, Shih IT, Ng IS. Quantification, regulation and production of 5-aminolevulinic acid by green fluorescent protein in recombinant Escherichia coli. J Biosci Bioeng, 2020, 129: 387-394.
|
| [89] |
Tan SI, Yu PJ, Ng IS. CRISPRi-mediated programming essential gene can as a direct enzymatic performance evaluation & determination (DEPEND) system. Biotechnol Bioeng, 2020, 117: 2842-2851.
|
| [90] |
Tangprasittipap A, Prasertsan P, Choorit W, Sasaki K. Biosynthesis of intracellular 5-aminolevulinic acid by a newly identified halotolerant Rhodobacter sphaeroides. Biotechnol Lett, 2007, 29: 773-778.
|
| [91] |
Tran NT, Pham DN, Kim CJ. Production of 5-aminolevulinic acid by recombinant Streptomyces coelicolor expressing hemA from Rhodobacter sphaeroides. Biotechnol Bioprocess Eng, 2019, 24: 488-499.
|
| [92] |
Tripetch P, Srzednicki G, Borompichaichartkul C. Separation process of 5-aminolevulinic acid from Rhodobacter spaeroides for increasing value of agricultural product by ion exchange chromatography. Acta Hortic, 2013, 1011: 265-271.
|
| [93] |
Van der Werf MJ, Zeikus JG. 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene. Appl Environ Microbiol, 1996, 62: 3560-3566.
|
| [94] |
Venosa DG, Fukuda H, Perotti C, Batlle A, Casas A. A method for separating ALA from ALA derivatives using ionic exchange extraction. J Photochem Photobiol B: Biol, 2004, 75: 157-163.
|
| [95] |
Verderber E, Lucast LJ, Van Dehy JA, Cozart P, Etter JB, Best EA. Role of the hemA gene product and delta-aminolevulinic acid in regulation of Escherichia coli heme synthesis. J Bacteriol Res, 1997, 179: 4583-4590.
|
| [96] |
Volland C, Felix F. Isolation and properties of 5-aminolevulinate synthase from the yeast Saccharomyces cerevisiae. Eur J Biochem, 1984, 142: 551-557.
|
| [97] |
Wang WY, Huang DD, Stachon D, Gough SP, Kannangara CG. Purification, characterization, and fractionation of the δ-aminolevulinic acid synthesizing enzymes from light-grown Chlamydomonas reinhardtii cells. Plant Physiol, 1984, 74: 569-575.
|
| [98] |
Wild PJ, Krieg RC, Seidl J, Stoehr R, Reher K, Hofmann C, . RNA expression profiling of normal and tumor cells following photodynamic therapy with 5-aminolevulinic acid–induced protoporphyrin IX in vitro. Mol Cancer Ther, 2005, 4: 516-528.
|
| [99] |
Wu Y, Jin X, Liao W, Hu L, Dawuda MM, Zhao X, . 5-Aminolevulinic acid (ALA) alleviated salinity stress in cucumber seedlings by enhancing chlorophyll synthesis pathway. Front Plant Sci, 2018, 9: 635.
|
| [100] |
Xie L, Hall D, Eiteman MA, Altman E. Optimization of recombinant aminolevulinate synthase production in Escherichia coli using factorial design. Appl Microbiol Biotechnol, 2003, 63: 267-273.
|
| [101] |
Xue C, Yu TH, Ng IS. Engineering pyridoxal kinase PdxY-integrated Escherichia coli strain and optimization for high-level 5-aminolevulinic acid production. J Taiwan Inst Chem Eng, 2021, 120: 49-58.
|
| [102] |
Yang J, Li Z, Fu W, Lin Y, Lin J, Cen P. Improved 5-aminolevulinic acid production with recombinant Escherichia coli by a short-term dissolved oxygen shock in fed-batch fermentation. Chin J Chem Eng, 2013, 21: 1291-1295.
|
| [103] |
Yang X, Palasuberniam P, Kraus D, Chen B. Aminolevulinic acid-based tumor detection and therapy: molecular mechanisms and strategies for enhancement. Int J Mol Sci, 2015, 16: 25865-25880.
|
| [104] |
Yang P, Liu W, Cheng X, Wang J, Wang Q, Qi Q. A new strategy for production of 5-aminolevulinic acid in recombinant Corynebacterium glutamicum with high yield. Appl Environ Microbiol, 2016, 82: 2709-2717.
|
| [105] |
Yang HJ, Lee KH, Lim HJ, Kim DM. Tandem cell-free protein synthesis as a tool for rapid screening of optimal molecular chaperones. Biotechnol J, 2019, 14: e1800523.
|
| [106] |
Yang Y, Zhang Y, Zou X, Guo X, Lin H. Perspective clinical study on effect of 5-aminolevulinic acid photodynamic therapy (ALA-PDT) in treating condylomata acuminata in pregnancy. Photodiagn Photodyn Ther, 2019, 25: 63-65.
|
| [107] |
Yang D, Park SY, Park YS, Eun H, Lee SY. Metabolic engineering of Escherichia coli for natural product biosynthesis. Trends Biotechnol, 2020, 38: 745-765.
|
| [108] |
Yi YC, Ng IS. Establishment of toolkit and T7RNA polymerase/promoter system in Shewanella oneidensis MR-1. J Taiwan Inst Chem Eng, 2020, 109: 8-14.
|
| [109] |
Yi YC, Ng IS. Redirection of metabolic flux in Shewanella oneidensis MR-1 by CRISPRi and modular design for 5-aminolevulinic acid production. Bioresour Bioprocess, 2021, 8: 1-11.
|
| [110] |
Yu X, Jin H, Liu W, Wang Q, Qi Q. Engineering Corynebacterium glutamicum to produce 5-aminolevulinic acid from glucose. Microb Cell Fact, 2015, 14: 183.
|
| [111] |
Yu TH, Yi YC, Shih IT, Ng IS. Enhanced 5-aminolevulinic acid production by co-expression of codon-optimized hemA gene with chaperone in genetic engineered Escherichia coli. Appl Biochem Biotechnol, 2020, 191: 299-312.
|
| [112] |
Zhang L, Chen J, Chen N, Sun J, Zheng P, Ma Y. Cloning of two 5-aminolevulinic acid synthase isozymes HemA and HemO from Rhodopseudomonas palustris with favorable characteristics for 5-aminolevulinic acid production. Biotechnol Lett, 2013, 35: 763-768.
|
| [113] |
Zhang J, Kang Z, Chen J, Du G. Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli. Sci Rep, 2015, 5: 8584.
|
| [114] |
Zhang J, Kang Z, Ding W, Chen J, Du G. Integrated optimization of the in vivo heme biosynthesis pathway and the in vitro iron concentration for 5-aminolevulinate production. Appl Biochem, 2016, 178: 1252-1262.
|
| [115] |
Zhang J, Weng H, Ding W, Kang Z. N-terminal engineering of glutamyl-tRNA reductase with positive charge arginine to increase 5-aminolevulinic acid biosynthesis. Bioengineered, 2017, 8: 424-427.
|
| [116] |
Zhang J, Rang Z, Qian S, Qiu L, Chen J, Du G. Construction of recombinant Saccharomyces cerevisiae for production of 5-aminolevulinic acid. J Food Sci Biotechnol, 2018, 37: 232-239.
|
| [117] |
Zhang X, Zhang J, Xu J, Zhao Q, Wang Q, Qi Q. Engineering Escherichia coli for efficient coproduction of polyhydroxyalkanoates and 5-aminolevulinic acid. J Ind Microbiol Biotechnol, 2018, 45: 43-51.
|
| [118] |
Zhang J, Weng H, Zhou Z, Du G, Kang Z. Engineering of multiple modular pathways for high-yield production of 5-aminolevulinic acid in Escherichia coli. Bioresour Technol, 2019, 274: 353-360.
|
| [119] |
Zhang B, Ye BC. Pathway engineering in Corynebacterium glutamicum S9114 for 5-aminolevulinic acid production. 3 Biotech, 2018, 8: 247.
|
| [120] |
Zhang J, Wang Z, Su T, Sun H, Zhu Y, Qi Q, Wang Q. Tuning the binding affinity of heme-responsive biosensor for precise and dynamic pathway regulation. iScience, 2020, 23(5): 101067.
|
| [121] |
Zhang C, Li Y, Zhu F, Li Z, Lu N, Li Y, . Metabolic engineering of an auto-regulated Corynebacterium glutamicum chassis for biosynthesis of 5-aminolevulinic acid. Bioresour Technol, 2020, 318: 124064.
|
| [122] |
Zhao XR, Choi KR, Lee SY. Metabolic engineering of Escherichia coli for secretory production of free haem. Nat Catal, 2018, 1: 720-728.
|
| [123] |
Zhou L, Ren J, Li Z, Nie J, Wang C, Zeng AP. Characterization and engineering of a Clostridium glycine riboswitch and its use to control a novel metabolic pathway for 5-aminolevulinic acid production in Escherichia coli. ACS Synth Biol, 2019, 8: 2327-2335.
|
| [124] |
Zhu C, Chen J, Wang Y, Wang L, Guo X, Chen N, . Enhancing 5-aminolevulinic acid tolerance and production by engineering the antioxidant defense system of Escherichia coli. Biotechnol Bioeng, 2019, 116: 2018-2028.
|
| [125] |
Zhu Y, Zhou C, Wang Y, Li C. Transporter engineering for microbial manufacturing. Biotechnol J., 2020, 15: 1900494.
|
| [126] |
Zou Y, Chen T, Feng L, Zhang S, Xing D, Wang Z. Enhancement of 5-aminolevulinic acid production by metabolic engineering of the glycine biosynthesis pathway in Corynebacterium glutamicum. Biotechnol Lett, 2017, 39: 1369-1374.
|
Funding
Ministry of Science and Technology, Taiwan(MOST 108-2221-E-006-004-MY3)