Current perspective on production and applications of microbial cellulases: a review

Nisha Bhardwaj , Bikash Kumar , Komal Agrawal , Pradeep Verma

Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 95

PDF
Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 95 DOI: 10.1186/s40643-021-00447-6
Review

Current perspective on production and applications of microbial cellulases: a review

Author information +
History +
PDF

Abstract

The potential of cellulolytic enzymes has been widely studied and explored for bioconversion processes and plays a key role in various industrial applications. Cellulase, a key enzyme for cellulose-rich waste feedstock-based biorefinery, has increasing demand in various industries, e.g., paper and pulp, juice clarification, etc. Also, there has been constant progress in developing new strategies to enhance its production, such as the application of waste feedstock as the substrate for the production of individual or enzyme cocktails, process parameters control, and genetic manipulations for enzyme production with enhanced yield, efficiency, and specificity. Further, an insight into immobilization techniques has also been presented for improved reusability of cellulase, a critical factor that controls the cost of the enzyme at an industrial scale. In addition, the review also gives an insight into the status of the significant application of cellulase in the industrial sector, with its techno-economic analysis for future applications. The present review gives a complete overview of current perspectives on the production of microbial cellulases as a promising tool to develop a sustainable and greener concept for industrial applications.

Keywords

Cellulase / Cellulose / Mechanism / Biorefinery / Techno-economic aspects

Cite this article

Download citation ▾
Nisha Bhardwaj, Bikash Kumar, Komal Agrawal, Pradeep Verma. Current perspective on production and applications of microbial cellulases: a review. Bioresources and Bioprocessing, 2021, 8(1): 95 DOI:10.1186/s40643-021-00447-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abbaszadeh M, Hejazi P. Metal affinity immobilization of cellulase on Fe3O4 nanoparticles with copper as ligand for biocatalytic applications. Food Chem, 2019, 290: 47-55.

[2]

Abraham RE, Verma ML, Barrow CJ, Puri M. Suitability of magnetic nanoparticle immobilised cellulases in enhancing enzymatic saccharification of pretreated hemp biomass. Biotechnol Biofuels, 2014, 7(90): 1-12.

[3]

Ahmad R, Khare SK. Immobilization of Aspergillus niger cellulase on multiwall carbon nanotubes for cellulose hydrolysis. Bioresour Technol, 2018, 252: 72-75.

[4]

Alexandri M, Schneider R, Papapostolou H, Ladakis D, Koutinas A, Venus J. Restructuring the conventional sugar beet industry into a novel biorefinery: fractionation and bioconversion of sugar beet pulp into succinic acid and value-added coproducts. ACS Sustain Chem Eng, 2019, 7(7): 6569-6579.

[5]

Ali SM, Omar SH, Soliman NA. Co-production of cellulase and xylanase enzymes by thermophilic Bacillus subtilis 276NS. Int J Biotechnol Wellness Ind, 2013, 2(2): 65-74.

[6]

Allardyce BJ, Linton SM, Saborowski R. The last piece in the cellulase puzzle: the characterisation of β-glucosidase from the herbivorous gecarcinid land crab Gecarcoidea natalis. J Exp Biol, 2010, 213(17): 2950-2957.

[7]

Almeida JR, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol, 2007, 82(4): 340-349.

[8]

Alvira P, Tomás-Pejó E, Ballesteros M, Negro M. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol, 2010, 101(13): 4851-4861.

[9]

Amore A, Knott BC, Supekar NT, Shajahan A, Azadi P, Zhao P, Wells L, Linger JG, Hobdey SE, Vander Wall TA. Distinct roles of N-and O-glycans in cellulase activity and stability. PNAS, 2017, 114(52): 13667-13672.

[10]

André G, Kanchanawong P, Palma R, Cho H, Deng X, Irwin D, Himmel M, Wilson D, Brady J. Computational and experimental studies of the catalytic mechanism of Thermobifida fusca cellulase Cel6A (E2). Protein Eng, 2003, 16(2): 125-134.

[11]

Andrić P, Meyer AS, Jensen PA, Dam-Johansen K. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: II. Quantification of inhibition and suitability of membrane reactors. Biotechnol Adv, 2010, 28(3): 407-425.

[12]

Ansari SA, Husain Q. Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv, 2012, 30(3): 512-523.

[13]

Ariaeenejad S, Motamedi E, Salekdeh GH. Stable cellulase immobilized on graphene oxide CMC-g-poly (AMPS-co-AAm) hydrogel for enhanced enzymatic hydrolysis of lignocellulosic biomass. Carbohydr Polym, 2020, 230: 115661.

[14]

Arias JM, de Oliveira MA, Modesto LF, de Castro AM, Pereira N Jr. Addition of surfactants and non-hydrolytic proteins and their influence on enzymatic hydrolysis of pretreated sugarcane bagasse. Appl Biochem Biotechnol, 2017, 181(2): 593-603.

[15]

Ariffin H, Hassan MA, Shah UKM, Abdullah N, Ghazali FM, Shirai Y. Production of bacterial endoglucanase from pretreated oil palm empty fruit bunch by Bacillus pumilus EB3. J Biosci Bioeng, 2008, 106(3): 231-236.

[16]

Arnoul-Jarriault B, Lachenal D, Chirat C, Heux L. Upgrading softwood bleached kraft pulp to dissolving pulp by cold caustic treatment and acid-hot caustic treatment. Ind Crops Prod, 2015, 65: 565-571.

[17]

Avhad DN, Rathod VK. Ultrasound-assisted production of a fibrinolytic enzyme in a bioreactor. Ultrason Sonochem, 2015, 22: 257-264.

[18]

Azeredo H, Barud H, Farinas CS, Vasconcellos VM, Claro AM. Bacterial cellulose as a raw material for food and food packaging applications. Front Sustain Food Syst, 2019, 18(3): 7.

[19]

Bajaj BK, Pangotra H, Wani MA, Sharma P, Sharma A. Partial purification and characterization of a highly thermostable and pH stable endoglucanase from a newly isolated Bacillus strain M-9. Int J Chem Technol, 2009, 16: 382-387.

[20]

Banerjee G, Scott-Craig JS, Walton JD. Improving enzymes for biomass conversion: a basic research perspective. Bioenergy Res, 2010, 3(1): 82-92.

[21]

Barta Z, Kovacs K, Reczey K, Zacchi G. Process design and economics of on-site cellulase production on various carbon sources in a softwood-based ethanol plant. Enzyme Res, 2010, 2010.

[22]

Bhardwaj N, Chanda K, Kumar B, Prasad HK, Sharma GD, Verma P. Statistical optimization of nutritional and physical parameters for xylanase production from newly isolated Aspergillus oryzae LC1 and its application in the hydrolysis of lignocellulosic agro-residues. BioResources, 2017, 12(4): 8519-8538.

[23]

Bhardwaj N, Kumar B, Agrawal K, Verma P. Bioconversion of rice straw by synergistic effect of in-house produced ligno-hemicellulolytic enzymes for enhanced bioethanol production. Bioresour Technol Rep, 2019, 10.

[24]

Bischof RH, Ramoni J, Seiboth B. Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microb Cell Factories, 2016, 15(1): 1-13.

[25]

Boraston AB, Bolam DN, Gilbert HJ, Davies GJ. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J, 2004, 382(3): 769-781.

[26]

Branco A, Santos JDG, Pimentel MM, Osuna JT, Lima LS, David JM. d-Mannitol from Agave sisalana biomass waste. Ind Crops Prod, 2010, 32(3): 507-510.

[27]

Brondi MG, Elias AM, Furlan FF, Giordano RC, Farinas CS. Performance targets defined by retro-techno-economic analysis for the use of soybean protein as saccharification additive in an integrated biorefinery. Sci Rep, 2020, 10(1): 1-3.

[28]

Brondi MG, Vasconcellos VM, Giordano RC, Farinas CS. Alternative low-cost additives to improve the saccharification of lignocellulosic biomass. Appl Biochem Biotechnol, 2019, 187(2): 461-473.

[29]

Cai LN, Xu SN, Lu T, Lin DQ, Yao SJ. Salt-tolerant mechanism of marine Aspergillus niger cellulase cocktail and improvement of its activity. Chin J Chem Eng, 2019, 28(4): 1120-1128.

[30]

Cao L. Immobilised enzymes: science or art?. Curr Opin Chem Biol, 2005, 9(2): 217-226.

[31]

Cao L. Carrier-bound immobilized enzymes: principles, application, and design, 2006, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.

[32]

Cao L, Van Langen L, Sheldon RA. Immobilised enzymes: carrier-bound or carrier-free?. Curr Opin Biotechnol, 2003, 14(4): 387-394.

[33]

Chakraborty S, Gaikwad A. Mixing effects in cellulase-mediated hydrolysis of cellulose for bio-ethanol production. Ind Eng Chem Res, 2010, 49(21): 10818-10825.

[34]

Chan YW, Acquah C, Obeng EM, Dullah EC, Jeevanandam J, Ongkudon CM. Parametric study of immobilized cellulase-polymethacrylate particle for the hydrolysis of carboxymethyl cellulose. Biochimie, 2019, 157: 204-212.

[35]

Chand P, Aruna A, Maqsood A, Rao L. Novel mutation method for increased cellulase production. J Appl Microbiol, 2005, 98(2): 318-323.

[36]

Chen Y, Wan J, Zhang X, Ma Y, Wang Y. Effect of beating on recycled properties of unbleached eucalyptus cellulose fiber. Carbohydr Polym, 2012, 87(1): 730-736.

[37]

Chen F, Zhang X, Du X, Yang L, Zu Y, Yang F. A new approach for obtaining trans-resveratrol from tree peony seed oil extracted residues using ionic liquid-based enzymatic hydrolysis in situ extraction. Sep Purif Technol, 2016, 170: 294-305.

[38]

Chen QY, Ma XJ, Li JG, Miao QX, Huang LL. Effect of the utilization of electron beam irradiation on the reactivity of bamboo dissolving pulp. BioResources, 2017, 12(3): 6251-6261.

[39]

Chen G, Sui X, Liu T, Wang H, Zhang J, Sun J, Xu T. Application of cellulase treatment in ionic liquid based enzyme-assisted extraction in combine with in-situ hydrolysis process for obtaining genipin from Eucommia ulmoides Olive barks. J Chromatogr A, 2018, 1569: 26-35.

[40]

Chen Q, Liu D, Wu C, Yao K, Li Z, Shi N, Wen F, Gates ID. Co-immobilization of cellulase and lysozyme on amino-functionalized magnetic nanoparticles: an activity-tunable biocatalyst for extraction of lipids from microalgae. Bioresour Technol, 2018, 263: 317-324.

[41]

Cheng S, Yang P, Guo L, Lin J, Lou N. Expression of multi-functional cellulase gene mfc in Coprinus cinereus under control of different basidiomycete promoters. Bioresour Technol, 2009, 100(19): 4475-4480.

[42]

Cherian E, Dharmendirakumar M, Baskar G. Immobilization of cellulase onto MnO2 nanoparticles for bioethanol production by enhanced hydrolysis of agricultural waste. Chin J Catal, 2015, 36(8): 1223-1229.

[43]

Chukwuma OB, Rafatullah M, Tajarudin HA, Ismail N. Lignocellulolytic enzymes in biotechnological and industrial processes: a review. Sustainability, 2020, 12(18): 7282.

[44]

Chundawat SP, Bellesia G, Uppugundla N, da Costa Sousa L, Gao D, Cheh AM, Agarwal UP, Bianchetti CM, Phillips GN Jr, Langan P. Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. J Am Chem Soc, 2011, 133(29): 11163-11174.

[45]

Colla LM, Primaz AL, Benedetti S, Loss RA, de Lima M, Reinehr CO, Bertolin TE, Costa JAV. Surface response methodology for the optimization of lipase production under submerged fermentation by filamentous fungi. Braz J Microbiol, 2016, 47(2): 461-467.

[46]

Combier JP, Melayah D, Raffier C, Gay G, Marmeisse R. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum. FEMS Microbiol Lett, 2003, 220(1): 141-148.

[47]

Crognale S, Liuzzi F, D'Annibale A, de Bari I, Petruccioli M. Cynara cardunculus a novel substrate for solid-state production of Aspergillus tubingensis cellulases and sugar hydrolysates. Biomass Bioenergy, 2019, 127.

[48]

Cruys-Bagger N, Tatsumi H, Ren GR, Borch K, Westh P. Transient kinetics and rate-limiting steps for the processive cellobiohydrolase Cel7A: effects of substrate structure and carbohydrate binding domain. Biochemistry, 2013, 52(49): 8938-8948.

[49]

Cui JD, Jia SR. Optimization protocols and improved strategies of cross-linked enzyme aggregates technology: current development and future challenges. Crit Rev Biotechnol, 2015, 35(1): 15-28.

[50]

Cunha F, Esperanca M, Zangirolami T, Badino A, Farinas C. Sequential solid-state and submerged cultivation of Aspergillus niger on sugarcane bagasse for the production of cellulase. Bioresour Technol, 2012, 112: 270-274.

[51]

Dadheech T, Shah R, Pandit R, Hinsu A, Chauhan PS, Jakhesara S, Kunjadiya A, Rank D, Joshi C. Cloning, molecular modeling and characterization of acidic cellulase from buffalo rumen and its applicability in saccharification of lignocellulosic biomass. Int J Biol Macromol, 2018, 113: 73-81.

[52]

Dadwal A, Sharma S, Satyanarayana T. Progress in ameliorating beneficial characteristics of microbial cellulases by genetic engineering approaches for cellulose saccharification. Front Microbiol, 2020, 24(11): 1387.

[53]

Dal Magro L, Silveira VC, de Menezes EW, Benvenutti EV, Nicolodi S, Hertz PF, Klein MP, Rodrigues RC. Magnetic biocatalysts of pectinase and cellulase: synthesis and characterization of two preparations for application in grape juice clarification. Int J Biol Macromol, 2018, 115: 35-44.

[54]

Dar MA, Pawar KD, Rajput BP, Rahi P, Pandit RS. Purification of a cellulase from cellulolytic gut bacterium, Bacillus tequilensis G9 and its evaluation for valorization of agro-wastes into added value byproducts. Biocatal Agric Biotechnol, 2019, 20.

[55]

Davison SA, Den Haan R, van Zyl WH. Heterologous expression of cellulase genes in natural Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol, 2016, 100(18): 8241-8254.

[56]

Davison SA, den Haan R, van Zyl WH. Identification of superior cellulase secretion phenotypes in haploids derived from natural Saccharomyces cerevisiae isolates. FEMS Yeast Res, 2019, 19.

[57]

Davison SA, Keller NT, van Zyl WH, den Haan R. Improved cellulase expression in diploid yeast strains enhanced consolidated bioprocessing of pretreated corn residues. Enzyme Microb Technol, 2019, 131.

[58]

De Castro RJS, Sato HH. Enzyme production by solid state fermentation: general aspects and an analysis of the physicochemical characteristics of substrates for agro-industrial wastes valorization. Waste Biomass Valoriz, 2015, 6(6): 1085-1093.

[59]

De Almeida MN, Falkoski DL, Guimarães VM, de Rezende ST. Study of gamba grass as carbon source for cellulase production by Fusarium verticillioides and its application on sugarcane bagasse saccharification. Ind Crops Prod, 2019, 133: 33-43.

[60]

De Souza Melchiors M, Veneral JG, Junior AF, de Oliveira JV, Di Luccio M, Prando LT, Terenzi H, de Oliveira D. Effect of compressed fluids on the enzymatic activity and structure of lysozyme. J Supercrit Fluids, 2017, 130: 125-132.

[61]

De Souza MF, da Silva Bon EP, da Silva AS. Production of cellulases and β-glucosidases by Trichoderma reesei Rut C30 using steam-pretreated sugarcane bagasse: an integrated approach for onsite enzyme production. Braz J Chem Eng, 2021, 25: 1-8.

[62]

Delgado-Povedano M, De Castro ML. A review on enzyme and ultrasound: a controversial but fruitful relationship. Anal Chim Acta, 2015, 889: 1-21.

[63]

Den Haan R, Van Zyl JM, Harms TM, van Zyl WH. Modeling the minimum enzymatic requirements for optimal cellulose conversion. Environ Res Lett, 2013, 8: 025013.

[64]

Den Haan R, Van Rensburg E, Rose SH, Görgens JF, Van Zyl WH. Progress and challenges in the engineering of non-cellulolytic microorganisms for consolidated bioprocessing. Curr Opin Biotechnol, 2015, 33: 32-38.

[65]

Desai MP, Pawar KD. Immobilization of cellulase on iron tolerant Pseudomonas stutzeri biosynthesized photocatalytically active magnetic nanoparticles for increased thermal stability. Mat Sci Eng C, 2020, 106.

[66]

Dhillon GS, Kaur S, Brar SK, Verma M. Potential of apple pomace as a solid substrate for fungal cellulase and hemicellulase bioproduction through solid-state fermentation. Ind Crops Prod, 2012, 38: 6-13.

[67]

Dijkstra Z, Merchant R, Keurentjes J. Stability and activity of enzyme aggregates of Calb in supercritical CO2. J Supercrit Fluids, 2007, 41(1): 102-108.

[68]

Ding SY, Xu Q, Crowley M, Zeng Y, Nimlos M, Lamed R, Bayer EA, Himmel ME. A biophysical perspective on the cellulosome: new opportunities for biomass conversion. Curr Opin Biotechnol, 2008, 19(3): 218-227.

[69]

Doi RH, Kosugi A. Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol, 2004, 2(7): 541-551.

[70]

Dong RJ, Zheng DF, Yang DJ, Qiu XQ. pH-responsive lignin-based magnetic nanoparticles for recovery of cellulase. Bioresour Technol, 2019, 294.

[71]

Ejaz U, Muhammad S, Hashmi IA, Ali FI, Sohail M. Utilization of methyltrioctylammonium chloride as new ionic liquid in pretreatment of sugarcane bagasse for production of cellulase by novel thermophilic bacteria. J Biotechnol, 2020, 317: 34-38.

[72]

Ellilä S, Fonseca L, Uchima C, Cota J, Goldman GH, Saloheimo M, Sacon V, Siika-Aho M. Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries. Biotechnol Biofuels, 2017, 10(30): 1-17.

[73]

Engström AC, Ek M, Henriksson G. Improved accessibility and reactivity of dissolving pulp for the viscose process: pretreatment with monocomponent endoglucanase. Biomacromol, 2006, 7(6): 2027-2031.

[74]

Ezat AA, El-Bialy NS, Mostafa HI, Ibrahim MA. Molecular docking investigation of the binding interactions of macrocyclic inhibitors with HCV NS3 protease and its mutants (R155K, D168A and A156V). Protein J, 2014, 33(1): 32-47.

[75]

Ezeilo UR, Lee CT, Huyop F, Zakaria II, Wahab RA. Raw oil palm frond leaves as cost-effective substrate for cellulase and xylanase productions by Trichoderma asperellum UC1 under solid-state fermentation. J Environ Manag, 2019, 243: 206-217.

[76]

Ezeilo UR, Wahab RA, Mahat NA. Optimization studies on cellulase and xylanase production by Rhizopus oryzae UC2 using raw oil palm frond leaves as substrate under solid state fermentation. Renew Energy, 2019, 156: 1301-1312.

[77]

Fang G, Chen H, Zhang Y, Chen A. Immobilization of pectinase onto Fe3O4@ SiO2–NH2 and its activity and stability. Int J Biol Macromol, 2016, 88: 189-195.

[78]

Ferreira RDG, Azzoni AR, Freitas S. Techno-economic analysis of the industrial production of a low-cost enzyme using E. coli: the case of recombinant β-glucosidase. Biotechnol Biofuels, 2018, 11(1): 1-13.

[79]

Ferreira RG, Azzoni AR, Freitas S. On the production cost of lignocellulose-degrading enzymes. Biofuel Bioprod Biorefin, 2021, 15(1): 85-99.

[80]

Fujii T, Murakami K, Sawayama S. Cellulase hyperproducing mutants derived from the fungus Trichoderma reesei QM9414 produced large amounts of cellulase at the enzymatic and transcriptional levels. Biosci Biotechnol Biochem, 2010, 74(2): 419-422.

[81]

Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A. Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol, 2004, 70(2): 1207-1212.

[82]

Gao ZH, Xu GJ, Zhao FK. Expression of a multi-functional endogenous cellulase gene from mollusc, Ampullaria crossean in Saccharomyces Cerevisiae. J Zhejiang Univ Sci, 2007, 4: 479-482.

[83]

Gao D, Haarmeyer C, Balan V, Whitehead TA, Dale BE, Chundawat SP. Lignin triggers irreversible cellulase loss during pretreated lignocellulosic biomass saccharification. Biotechnol Biofuels, 2014, 7(1): 1-3.

[84]

Garcia-Galan C, Berenguer-Murcia Á, Fernandez-Lafuente R, Rodrigues RC. Potential of different enzyme immobilization strategies to improve enzyme performance. Adv Synth Catal, 2011, 353(16): 2885-2904.

[85]

Gasser B, Saloheimo M, Rinas U, Dragosits M, Rodríguez-Carmona E, Baumann K, Giuliani M, Parrilli E, Branduardi P, Lang C. Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microb Cell Fact, 2008, 7(1): 1-18.

[86]

Gehring AM, Nodwell JR, Beverley SM, Losick R. Genomewide insertional mutagenesis in Streptomyces coelicolor reveals additional genes involved in morphological differentiation. Proc Natl Acad Sci, 2000, 97(17): 9642-9647.

[87]

Ghadiri E, Naghavi NS, Ghaedi K. Molecular cloning and characterizing of Bacillus subtilis cellulase collected from central-northern Iran forests. Gene Rep, 2020, 20.

[88]

Goja AM, Yang H, Cui M, Li C. Aqueous two-phase extraction advances for bioseparation. J Bioprocess Biotechnol, 2013, 4(1): 1-8.

[89]

Gokhale AA, Lu J, Lee I. Immobilization of cellulase on magnetoresponsive graphene nano-supports. J Mol Catal B Enzym, 2013, 90: 76-86.

[90]

Goldbeck R, Ramos MM, Pereira GA, Maugeri-Filho F. Cellulase production from a new strain Acremonium strictum isolated from the Brazilian Biome using different substrates. Bioresour Technol, 2013, 128: 797-803.

[91]

Gomes D, Rodrigues AC, Domingues L, Gama M. Cellulase recycling in biorefineries—is it possible?. Appl Microbiol Biotechnol, 2015, 99(10): 4131-4143.

[92]

Granado J, Kertesz-Chaloupková K, Aebi M, Kües U. Restriction enzyme-mediated DNA integration in Coprinus cinereus. Mol Gen Genet, 1997, 256(1): 28-36.

[93]

Grewal J, Ahmad R, Khare S. Development of cellulase-nanoconjugates with enhanced ionic liquid and thermal stability for in situ lignocellulose saccharification. Bioresour Technol, 2017, 242: 236-243.

[94]

Guisan JM. Immobilization of enzymes and cells, 2006, New York: Springer

[95]

Guldhe A, Singh B, Renuka N, Singh P, Misra R, Bux F. Bioenergy: a sustainable approach for cleaner environment. Phytoremediation potential of bioenergy plants, 2017, Singapore: Springer, 47-62.

[96]

Gupta P, Samant K, Sahu A. Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. Int J Microbiol, 2012, 2012.

[97]

Gusakov AV, Salanovich TN, Antonov AI, Ustinov BB, Okunev ON, Burlingame R, Emalfarb M, Baez M, Sinitsyn AP. Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnol Bioeng, 2007, 97(5): 1028-1038.

[98]

Han J, Wang L, Wang Y, Dong J, Tang X, Ni L, Wang L. Preparation and characterization of Fe3O4-NH2 4-arm-PEG-NH2, a novel magnetic four-arm polymer-nanoparticle composite for cellulase immobilization. Chem Eng J, 2018, 130: 90-98.

[99]

Hansen GH, Lübeck M, Frisvad JC, Lübeck PS, Andersen B. Production of cellulolytic enzymes from ascomycetes: comparison of solid state and submerged fermentation. Process Biochem, 2015, 50(9): 1327-1341.

[100]

Harris PV, Xu F, Kreel NE, Kang C, Fukuyama S. New enzyme insights drive advances in commercial ethanol production. Curr Opin Chem Biol, 2014, 19: 162-170.

[101]

Harshvardhan K, Mishra A, Jha B. Purification and characterization of cellulase from a marine Bacillus sp. H1666: a potential agent for single step saccharification of seaweed biomass. J Mol Catal B Enzym, 2013, 93: 51-56.

[102]

Hasunuma T, Okazaki F, Okai N, Hara KY, Ishii J, Kondo A. A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Bioresour Technol, 2013, 135: 513-522.

[103]

He M, Yang G, Chen J, Ji X, Wang Q. Production and characterization of cellulose nanofibrils from different chemical and mechanical pulps. J Wood Chem Technol, 2018, 38(2): 149-158.

[104]

Herpoël-Gimbert I, Margeot A, Dolla A, Jan G, Mollé D, Lignon S, Mathis H, Sigoillot J-C, Monot F, Asther M. Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol Biofuels, 2008, 1(1): 1-12.

[105]

Hirayama K, Watanabe H, Tokuda G, Kitamoto K, Arioka M. Purification and characterization of termite endogenous β-1, 4-endoglucanases produced in Aspergillus oryzae. Biosci Biotechnol Biochem, 2010, 74(8): 1680-1686.

[106]

Ho SL, Lan JCW, Tan JS, Yim HS, Ng HS. Aqueous biphasic system for the partial purification of Bacillus subtilis carboxymethyl cellulase. Process Biochem, 2017, 58: 276-281.

[107]

Hofman M, Thonart P. Engineering and manufacturing for biotechnology, 2001, Dordrecht: Springer.

[108]

Hou R, Hu J, Wang Y, Wei H, Gao MT. Simultaneous production of cellulase and ferulic acid esterase by Penicillium decumbens with rice straw as the sole carbon source. J Biosci Bioeng, 2020, 129(3): 276-283.

[109]

Huang SY, Zou X. Advances and challenges in protein-ligand docking. Int J Mol Sci, 2010, 11(8): 3016-3034.

[110]

Hyeon JE, Shin SK, Han SO. Design of nanoscale enzyme complexes based on various scaffolding materials for biomass conversion and immobilization. Biotechnol J, 2016, 11(11): 1386-1396.

[111]

Ibarra D, Köpcke V, Ek M. Behavior of different monocomponent endoglucanases on the accessibility and reactivity of dissolving-grade pulps for viscose process. Enzyme Microb Technol, 2010, 47(7): 355-362.

[112]

Igarashi K, Wada M, Samejima M. Activation of crystalline cellulose to cellulose IIII results in efficient hydrolysis by cellobiohydrolase. FEBS J, 2007, 274(7): 1785-1792.

[113]

Ike M, Park JY, Tabuse M, Tokuyasu K. Cellulase production on glucose-based media by the UV-irradiated mutants of Trichoderma reesei. Appl Microbiol Biotechnol, 2010, 87(6): 2059-2066.

[114]

Irshad M, Murtza A, Zafar M, Bhatti KH, Rehman A, Anwar Z. Chitosan-immobilized pectinolytics with novel catalytic features and fruit juice clarification potentialities. Int J Biol Macromol, 2017, 104: 242-250.

[115]

Jalal J, Leong TS. Microstreaming and its role in applications: a mini-review. Fluids, 2018, 3(93): 1-13.

[116]

Jampala P, Tadikamalla S, Preethi M, Ramanujam S, Uppuluri KB. Concurrent production of cellulase and xylanase from Trichoderma reesei NCIM 1186: enhancement of production by desirability-based multi-objective method. 3 Biotech, 2017, 7(14): 1-13.

[117]

Jayasekara S, Ratnayake R. Microbial cellulases: an overview and applications. Cellulose, 2019, 2(22): 1-21.

[118]

Jeon J, Park SY, Chi MH, Choi J, Park J, Rho HS, Kim S, Goh J, Yoo S, Choi J. Genome-wide functional analysis of pathogenicity genes in the rice blast fungus. Nat Genet, 2007, 39(4): 561-565.

[119]

Jeong DH, An S, Kang HG, Moon S, Han JJ, Park S, Lee HS, An K, An G. T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol, 2002, 130(4): 1636-1644.

[120]

Juturu V, Wu JC. Microbial cellulases: engineering, production and applications. Renew Sustain Energy Rev, 2014, 33: 188-203.

[121]

Juturu V, Wu JC. Microbial exo-xylanases: a mini review. Appl Biochem Biotechnol, 2014, 174(1): 81-92.

[122]

Kamal T, Ahmad I, Khan SB, Asiri AM. Anionic polysaccharide stabilized nickel nanoparticles-coated bacterial cellulose as a highly efficient dip-catalyst for pollutants reduction. React Funct Polym, 2019, 145.

[123]

Kewcharoen W, Srisapoome P. Probiotic effects of Bacillus spp. from Pacific white shrimp (Litopenaeus vannamei) on water quality and shrimp growth, immune responses, and resistance to Vibrio parahaemolyticus (AHPND strains). Fish Shellfish Immunol, 2019, 94: 175-189.

[124]

Kim N, Choo YM, Lee KS, Hong SJ, Seol KY, Je YH, Sohn HD, Jin BR. Molecular cloning and characterization of a glycosyl hydrolase family 9 cellulase distributed throughout the digestive tract of the cricket Teleogryllus emma. Comp Biochem Physiol B Biochem Mol Biol, 2008, 150(4): 368-376.

[125]

Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW. The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng, 2012, 109(4): 1083-1087.

[126]

Krajewska B. Application of chitin-and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb Technol, 2004, 35(2–3): 126-139.

[127]

Kristensen JB, Felby C, Jørgensen H. Determining yields in high solids enzymatic hydrolysis of biomass. Appl Biochem Biotechnol, 2009, 156(1–3): 127-132.

[128]

Kroukamp H, Den Haan R, Van Wyk N, Van Zyl WH. Overexpression of native PSE1 and SOD1 in Saccharomyces cerevisiae improved heterologous cellulase secretion. Appl Energy, 2013, 102: 150-156.

[129]

Kucharska K, Rybarczyk P, Hołowacz I, Łukajtis R, Glinka M, Kamiński M. Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules, 2018, 23(11): 2937.

[130]

Kumar N (2009) Studies of glucose oxidase immobilized carbon nanotube-polyaniline composites, MSc. thesis. Thapar University, Patiala (India)

[131]

Kumar H, Christopher LP. Recent trends and developments in dissolving pulp production and application. Cellulose, 2017, 24(6): 2347-2365.

[132]

Kumar B, Verma P. Enzyme mediated multi-product process: a concept of bio-based refinery. Ind Crops Prod, 2020, 154.

[133]

Kumar B, Verma P. Application of hydrolytic enzymes in biorefinery and its future prospects. Microbial strategies for techno-economic biofuel production, 2020, Singapore: Springer, 59-83.

[134]

Kumar R, Singh S, Singh OV. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol, 2008, 35(5): 377-391.

[135]

Kumar B, Bhardwaj N, Alam A, Agrawal K, Prasad H, Verma P. Production, purification and characterization of an acid/alkali and thermo tolerant cellulase from Schizophyllum commune NAIMCC-F-03379 and its application in hydrolysis of lignocellulosic wastes. AMB Express, 2018, 8(173): 1-16.

[136]

Kumar S, Morya V, Gadhavi J, Vishnoi A, Singh J, Datta B. Investigation of nanoparticle immobilized cellulase: nanoparticle identity, linker length and polyphenol hydrolysis. Heliyon, 2019, 5.

[137]

Kunitake E, Kobayashi T. Conservation and diversity of the regulators of cellulolytic enzyme genes in Ascomycete fungi. Curr Genet, 2017, 63(6): 951-958.

[138]

Ladole MR, Mevada JS, Pandit AB. Ultrasonic hyperactivation of cellulase immobilized on magnetic nanoparticles. Bioresour Technol, 2017, 239: 117-126.

[139]

Lambertz C, Garvey M, Klinger J, Heesel D, Klose H, Fischer R, Commandeur U. Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. Biotechnol Biofuels, 2014, 7(135): 1-15.

[140]

Lan TQ, Wei D, Yang ST, Liu X. Enhanced cellulase production by Trichoderma viride in a rotating fibrous bed bioreactor. Bioresour Technol, 2013, 133: 175-182.

[141]

Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev, 2008, 108(6): 2064-2110.

[142]

Li WY, Wang J, Li YH, Ding M, Xu GJ, Liu LY, Zhao FK. pH-dependent stability of EGX, a multi-functional cellulase from mollusca. Ampullaria Crossean Acta Biochim Biophys Sin, 2004, 36(9): 603-608.

[143]

Li YL, Li H, Li AN, Li DC. Cloning of a gene encoding thermostable cellobiohydrolase from the thermophilic fungus Chaetomium thermophilum and its expression in Pichia pastoris. J Appl Microbiol, 2009, 106: 1867-1875.

[144]

Li BF, Zhu YX, Gu ZB, Yuan C, Jing L, Xiao G, Li F, Qing L, Xi DM, Mao HM. Screening and characterization of a novel ruminal cellulase gene (Umcel-1) from a metagenomic library of gayal (Bos frontalis). J Integr Agr, 2016, 15(4): 855-861.

[145]

Li J, Ma X, Duan C, Liu Y, Zhang H, Ni Y. Enhanced removal of hemicelluloses from cellulosic fibers by poly (ethylene glycol) during alkali treatment. Cellulose, 2016, 23(1): 231-238.

[146]

Li Y, Zhang X, Xiong L, Mehmood MA, Zhao X, Bai F. On-site cellulase production and efficient saccharification of corn stover employing cbh2 overexpressing Trichoderma reesei with novel induction system. Bioresour Technol, 2017, 238: 643-649.

[147]

Li Z, Liu G, Qu Y. Improvement of cellulolytic enzyme production and performance by rational designing expression regulatory network and enzyme system composition. Bioresour Technol, 2017, 245: 1718-1726.

[148]

Li J, Zhang S, Li H, Huang K, Zheng L, Ouyang X, Zheng Q, Huang L, Chen L, Ni Y. A new approach to improve dissolving pulp properties: spraying cellulase on rewetted pulp at a high fiber consistency. Cellulose, 2018, 25(12): 6989-7002.

[149]

Li Q, Al Loman A, Callow NV, Islam SM, Ju LK. Leveraging pH profiles to direct enzyme production (cellulase, xylanase, polygalacturonase, pectinase, α-galactosidase, and invertase) by Aspergillus foetidus. Biochem Eng J, 2018, 137: 247-254.

[150]

Li C, Li D, Feng J, Fan X, Chen S, Zhang D, He R. Duckweed (Lemna minor) is a novel natural inducer of cellulase production in Trichoderma reesei. J Biosci Bioeng, 2019, 127(4): 486-491.

[151]

Li F, Xie Y, Gao X, Shan M, Sun C, Niu YD, Shan A. Screening of cellulose degradation bacteria from Min pigs and optimization of its cellulase production. Electron J Biotechnol, 2020, 1(48): 29-35.

[152]

Liang W, Cao X. Preparation of a pH-sensitive polyacrylate amphiphilic copolymer and its application in cellulase immobilization. Bioresour Technol, 2012, 116: 140-146.

[153]

Liang L, Xue D. Kinetics of cellulose hydrolysis by halostable cellulase from a marine Aspergillus niger at different salinities. Process Biochem, 2017, 63: 163-168.

[154]

Liao H, Chen D, Yuan L, Zheng M, Zhu Y, Liu X. Immobilized cellulase by polyvinyl alcohol/Fe2O3 magnetic nanoparticle to degrade microcrystalline cellulose. Carbohydr Polym, 2010, 82(3): 600-604.

[155]

Libardi N, Soccol CR, Góes-Neto A, de Oliveira J, de Souza Vandenberghe LP. Domestic wastewater as substrate for cellulase production by Trichoderma harzianum. Process Biochem, 2017, 57: 190-199.

[156]

Lima JS, Araújo PH, Sayer C, Souza AA, Viegas AC, de Oliveira D. Cellulase immobilization on magnetic nanoparticles encapsulated in polymer nanospheres. Bioprocess Biosyst Eng, 2017, 40(4): 511-518.

[157]

Lin J, Zheng M, Wang J, Shu W, Guo L. Efficient transformation and expression of gfp gene in the edible mushroom Pleurotus nebrodensis. Prog Nat Sci, 2008, 18(7): 819-824.

[158]

Linder M, Teeri TT. The roles and function of cellulose-binding domains. J Biotechnol, 1997, 57(1–3): 15-28.

[159]

Liu JH, Tsai CF, Liu JW, Cheng KJ, Cheng CL. The catalytic domain of a Piromyces rhizinflata cellulase expressed in Escherichia coli was stabilized by the linker peptide of the enzyme. Enzyme Microb Technol, 2001, 28(7–8): 582-589.

[160]

Liu D, Zhang R, Yang X, Wu H, Xu D, Tang Z, Shen Q. Thermostable cellulase production of Aspergillus fumigatus Z5 under solid-state fermentation and its application in degradation of agricultural wastes. Int Biodeter Biodegr, 2011, 65(5): 717-725.

[161]

Liu Y, Sun B, Zheng X, Yu L, Li J. Integrated microwave and alkaline treatment for the separation between hemicelluloses and cellulose from cellulosic fibers. Bioresour Technol, 2018, 247: 859-863.

[162]

Lo N, Tokuda G, Watanabe H, Rose H, Slaytor M, Maekawa K, Bandi C, Noda H. Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr Biol, 2000, 10(13): 801-804.

[163]

Lodha A, Pawar S, Rathod V. Optimised cellulase production from fungal co-culture of Trichoderma reesei NCIM 1186 and Penicillium citrinum NCIM 768 under solid state fermentation. J Environ Chem Eng, 2020, 8.

[164]

Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res, 2014, 42(D1): D490-D495.

[165]

Lopes AD, Ferreira Filho EX, Moreira LR. An update on enzymatic cocktails for lignocellulose breakdown. J Appl Microbiol, 2018, 125(3): 632-645.

[166]

R, Zhao A, Li J, Liu C, Wang C, Wang X, Wang X, Pei R, Lu C, Yu M. Screening, cloning and expression analysis of a cellulase derived from the causative agent of hypertrophy sorosis scleroteniosis, Ciboria shiraiana. Gene, 2015, 565(2): 221-227.

[167]

Lucio VD, Susana B, Hernández-Domínguez EM, Villa-García M, Díaz-Godínez G, Mandujano-Gonzalez V, Mendoza-Mendoza B, Álvarez-Cervantes J. Exogenous enzymes as zootechnical additives in animal feed: a review. Catalysts, 2021, 11(7): 851.

[168]

Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev, 2002, 66(3): 506-577.

[169]

Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J. How biotech can transform biofuels. Nat Biotechnol, 2008, 26(2): 169-172.

[170]

Lynd LR, Liang X, Biddy MJ, Allee A, Cai H, Foust T, Himmel ME, Laser MS, Wang M, Wyman CE. Cellulosic ethanol: status and innovation. Curr Opin Biotechnol, 2017, 45: 202-211.

[171]

Ma L, Zhang J, Zou G, Wang C, Zhou Z. Improvement of cellulase activity in Trichoderma reesei by heterologous expression of a beta-glucosidase gene from Penicillium decumbens. Enzyme Microb Technol, 2011, 49(4): 366-371.

[172]

Maeda RN, Barcelos CA, Santa Anna LMM, Pereira N Jr. Cellulase production by Penicillium funiculosum and its application in the hydrolysis of sugar cane bagasse for second generation ethanol production by fed batch operation. J Biotechnol, 2013, 163(1): 38-44.

[173]

Marín-Navarro J, Gurgu L, Alamar S, Polaina J. Structural and functional analysis of hybrid enzymes generated by domain shuffling between Saccharomyces cerevisiae (var diastaticus) Sta1 glucoamylase and Saccharomycopsis fibuligera Bgl1 β-glucosidase. Appl Microbiol Biotechnol, 2011, 89(1): 121-130.

[174]

Markets and Markets (M&M) (2020) Industrial enzyme market, Report Code: FB 2277. https://www.marketsandmarkets.com/Market-Reports/industrial-enzymes-market-237327836.html. Accessed 27 Aug 2021

[175]

Marques NP, de Cassia PJ, Gomes E, da Silva R, Araújo AR, Ferreira H, Rodrigues A, Dussán KJ, Bocchini DA. Cellulases and xylanases production by endophytic fungi by solid state fermentation using lignocellulosic substrates and enzymatic saccharification of pretreated sugarcane bagasse. Ind Crops Prod, 2018, 122: 66-75.

[176]

Masutti D, Borgognone A, Scardovi F, Vaccari C, Setti L. Effects on the enzymes production from different mixes of agro-food wastes. Chem Eng Trans, 2015, 43: 487-492.

[177]

Mazzola PG, Lopes AM, Hasmann FA, Jozala AF, Penna TC, Magalhaes PO, Rangel-Yagui CO, Pessoa A Jr. Liquid–liquid extraction of biomolecules: an overview and update of the main techniques. J Chem Technol Biotechnol, 2008, 83(2): 143-157.

[178]

Mei HZ, Xia DG, Zhao QL, Zhang GZ, Qiu ZY, Qian P, Lu C. Molecular cloning, expression, purification and characterization of a novel cellulase gene (Bh-EGaseI) in the beetle Batocera horsfieldi. Gene, 2016, 576(1): 45-51.

[179]

Melgosa R, Sanz MT, Solaesa ÁG, Bucio SL, Beltrán S. Enzymatic activity and conformational and morphological studies of four commercial lipases treated with supercritical carbon dioxide. J Supercrit Fluids, 2015, 97: 51-62.

[180]

Mellitzer A, Ruth C, Gustafsson C, Welch M, Birner-Grünberger R, Weis R, Purkarthofer T, Glieder A. Synergistic modular promoter and gene optimization to push cellulase secretion by Pichia pastoris beyond existing benchmarks. J Biotechnol, 2014, 191: 187-195.

[181]

Meng QS, Liu CG, Zhao XQ, Bai FW. Engineering Trichoderma reesei Rut-C30 with the overexpression of egl1 at the ace1 locus to relieve repression on cellulase production and to adjust the ratio of cellulolytic enzymes for more efficient hydrolysis of lignocellulosic biomass. J Biotechnol, 2018, 285: 56-63.

[182]

Miao Q, Chen L, Huang L, Tian C, Zheng L, Ni Y. A process for enhancing the accessibility and reactivity of hardwood kraft-based dissolving pulp for viscose rayon production by cellulase treatment. Bioresource Technol, 2014, 154: 109-113.

[183]

Michielse CB, Hooykaas PJ, Van den Hondel CA, Ram AF. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Current Genet, 2005, 48(1): 1-17.

[184]

Miletić N, Vuković Z, Nastasović A, Loos K. Macroporous poly (glycidyl methacrylate-co-ethylene glycol dimethacrylate) resins—versatile immobilization supports for biocatalysts. J Mol Catal B Enzym, 2009, 56(4): 196-201.

[185]

Mohapatra S, Padhy S, Mohapatra PKD, Thatoi H. Enhanced reducing sugar production by saccharification of lignocellulosic biomass, Pennisetum species through cellulase from a newly isolated Aspergillus fumigatus. Bioresour Technol, 2018, 253: 262-272.

[186]

Moran-Aguilar M, Costa-Trigo I, Calderón-Santoyo M, Domínguez J, Aguilar-Uscanga M. Production of cellulases and xylanases in solid-state fermentation by different strains of Aspergillus niger using sugarcane bagasse and brewery spent grain. Biochem Eng J, 2021, 172.

[187]

Morozova VV, Gusakov AV, Andrianov RM, Pravilnikov AG, Osipov DO, Sinitsyn AP. Cellulases of Penicillium verruculosum. Biotechnol J, 2010, 5(8): 871-880.

[188]

Mou H, Li B, Fardim P. Pretreatment of corn stover with the modified hydrotropic method to enhance enzymatic hydrolysis. Energy Fuels, 2014, 28(7): 4288-4293.

[189]

Mrudula S, Murugammal R. Production of cellulase by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Braz J Microbiol, 2011, 42(3): 1119-1127.

[190]

Mukasekuru MR, Hu J, Zhao X, Sun FF, Pascal K, Ren H, Zhang J. Enhanced high-solids fed-batch enzymatic hydrolysis of sugar cane bagasse with accessory enzymes and additives at low cellulase loading. ACS Sustain Chem Eng, 2018, 6(10): 12787-12796.

[191]

Murray P, Collins C, Grassick A, Tuohy M. Molecular cloning, transcriptional, and expression analysis of the first cellulase gene (cbh2), encoding cellobiohydrolase II, from the moderately thermophilic fungus Talaromyces emersonii and structure prediction of the gene product. Biochem Biophys Res Comm, 2003, 301(2): 280-286.

[192]

Nadar SS, Rathod VK. A co-immobilization of pectinase and cellulase onto magnetic nanoparticles for antioxidant extraction from waste fruit peels. Biocatal Agric Biotechnol, 2019, 17: 470-479.

[193]

Nair AS, Al-Battashi H, Al-Akzawi A, Annamalai N, Gujarathi A, Al-Bahry S, Dhillon GS, Sivakumar N. Waste office paper: a potential feedstock for cellulase production by a novel strain Bacillus velezensis ASN1. Waste Manag, 2018, 79: 491-500.

[194]

Nakashima K, Watanabe H, Saitoh H, Tokuda G, Azuma JI. Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki. Insect Biochem Mol Biol, 2002, 32(7): 777-784.

[195]

Ng T, Cheung R. Cellulases: types, actions, mechanism and uses, 2011, New York: Nova Science, 251-263.

[196]

Nguyen ST, Freund HL, Kasanjian J, Berlemont R. Function, distribution, and annotation of characterized cellulases, xylanases, and chitinases from CAZy. Appl Microbiol Biotechnol, 2018, 102(4): 1629-1637.

[197]

Nussinovitch A. Bead formation, strengthening, and modification. Polymer macro-and micro-gel beads: fundamentals and applications, 2010, New York: Springer, 27-52.

[198]

Obeng EM, Adam SN, Budiman C, Ongkudon CM, Maas R, Jose J. Lignocellulases: a review of emerging and developing enzymes, systems, and practices. Bioresour Bioprocess, 2017, 4(1): 1-22.

[199]

Oberoi HS, Chavan Y, Bansal S, Dhillon GS. Production of cellulases through solid state fermentation using kinnow pulp as a major substrate. Food Bioprocess Technol, 2010, 3(4): 528-536.

[200]

Ohtoko K, Ohkuma M, Moriya S, Inoue T, Usami R, Kudo T. Diverse genes of cellulase homologues of glycosyl hydrolase family 45 from the symbiotic protists in the hindgut of the termite Reticulitermes speratus. Extremophiles, 2000, 4(6): 343-349.

[201]

Okereke O, Akanya H, Egwim E. Purification and characterization of an acidophilic cellulase from Pleurotus ostreatus and its potential for agrowastes valorization. Biocatal Agric Biotechnol, 2017, 12: 253-259.

[202]

Oliveira RDS, Bizeto MA, Camilo FF. Production of self-supported conductive films based on cellulose, polyaniline and silver nanoparticles. Carbohydr Polym, 2018, 199: 84-91.

[203]

Oliveira SD, de Araújo Padilha CE, Asevedo EA, Pimentel VC, de Araújo FR, de Macedo GR, dos Santos ES. Utilization of agroindustrial residues for producing cellulases by Aspergillus fumigatus on semi-solid fermentation. J Environ Chem Eng, 2018, 6(1): 937-944.

[204]

Olofsson J, Barta Z, Börjesson P, Wallberg O (2015) Life cycle assessment and techno-economical analysis of on-site enzyme production in 2nd generation bioethanol. The Swedish Knowledge Center For Renewable Transportation Fuels, Göteborg. https://f3centre.se/app/uploads/f3_report_2015-05_Enzyme-production-in-2nd-generation-bioethanol-150925.pdf. Accessed 27 Aug 2021

[205]

Olson DG, McBride JE, Shaw AJ, Lynd LR. Recent progress in consolidated bioprocessing. Curr Opin Biotechnol, 2012, 23(3): 396-405.

[206]

Østby H, Hansen LD, Horn SJ, Eijsink VG, Várnai A. Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives. J Ind Microbiol Biotechnol, 2020, 47(9–10): 623-657.

[207]

Pal A, Khanum F. Covalent immobilization of xylanase on glutaraldehyde activated alginate beads using response surface methodology: characterization of immobilized enzyme. Process Biochem, 2011, 46(6): 1315-1322.

[208]

Pandey AK, Negi S. Enhanced cellulase recovery in SSF from Rhizopus oryzae SN5 and immobilization for multi-batch saccharification of carboxymethylcellulose. Biocatal Agric Biotechnol, 2020, 26.

[209]

Pandey AK, Edgard G, Negi S. Optimization of concomitant production of cellulase and xylanase from Rhizopus oryzae SN5 through EVOP-factorial design technique and application in Sorghum Stover based bioethanol production. Renew Energy, 2016, 98: 51-56.

[210]

Pant G, Prakash A, Pavani J, Bera S, Deviram G, Kumar A, Panchpuri M, Prasuna RG. Production, optimization and partial purification of protease from Bacillus subtilis. J Taibah Univ Sci, 2015, 9(1): 50-55.

[211]

Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels, 2010, 3(10): 1-10.

[212]

Paul M, Panda G, Mohapatra PKD, Thatoi H. Study of structural and molecular interaction for the catalytic activity of cellulases: an insight in cellulose hydrolysis for higher bioethanol yield. J Mol Struct, 2020, 1204.

[213]

Perwez M, Mazumder JA, Sardar M. Preparation and characterization of reusable magnetic combi-CLEA of cellulase and hemicellulase. Enzyme Microb Technol, 2019, 131.

[214]

Pineda X, Quintana GC, Herrera AP, Sánchez JH. Preparation and characterization of magnetic cellulose fibers modified with cobalt ferrite nanoparticles. Mater Chem Phys, 2020, 259.

[215]

Podrepšek GH, Knez Ž, Leitgeb M. Activation of cellulase cross-linked enzyme aggregates (CLEAs) in scCO2. J Supercrit Fluids, 2019, 154.

[216]

Poorakbar E, Shafiee A, Saboury AA, Rad BL, Khoshnevisan K, Mamani L, Derakhshankhah H, Ganjali MR, Hosseini M. Synthesis of magnetic gold mesoporous silica nanoparticles core shell for cellulase enzyme immobilization: improvement of enzymatic activity and thermal stability. Process Biochem, 2018, 71: 92-100.

[217]

Prajapati BP, Suryawanshi RK, Agrawal S, Ghosh M, Kango N. Characterization of cellulase from Aspergillus tubingensis NKBP-55 for generation of fermentable sugars from agricultural residues. Bioresour Technol, 2018, 250: 733-740.

[218]

Premalatha N, Gopal NO, Jose PA, Anandham R, Kwon SW. Optimization of cellulase production by Enhydrobacter sp. ACCA2 and its application in biomass saccharification. Front Microbiol, 2015, 6(1046): 1-11.

[219]

Qi H. Novel functional materials based on cellulose, 2017, Cham: Springer

[220]

Rabinovich M, Melnick M, Bolobova A. The structure and mechanism of action of cellulolytic enzymes. Biochem Mosc, 2002, 67(8): 850-871.

[221]

Raj K, Krishnan C. High sugar yields from sugarcane (Saccharum officinarum) bagasse using low-temperature aqueous ammonia pretreatment and laccase-mediator assisted enzymatic hydrolysis. Ind Crops Prod, 2018, 111: 673-683.

[222]

Raja S, Murty VR, Thivaharan V, Rajasekar V, Ramesh V. Aqueous two phase systems for the recovery of biomolecules—a review. Sci Technol, 2011, 1(1): 7-16.

[223]

Ravindran R, Jaiswal AK. Microbial enzyme production using lignocellulosic food industry wastes as feedstock: a review. Bioengineering, 2016, 3(30): 1-22.

[224]

Raza S, Yong X, Deng J. Immobilizing cellulase on multi-layered magnetic hollow particles: preparation, bio-catalysis and adsorption performances. Microporous Mesoporous Mater, 2019, 285: 112-119.

[225]

Reinikainen T, Ruohonen L, Nevanen T, Laaksonen L, Kraulis P, Jones TA, Knowles JK, Teeri TT. Investigation of the function of mutated cellulose-binding domains of Trichoderma reesei cellobiohydrolase I. Proteins, 1992, 14(4): 475-482.

[226]

Ribeiro O, Wiebe M, Ilmén M, Domingues L, Penttilä M. Expression of Trichoderma reesei cellulases CBHI and EGI in Ashbya gossypii. Appl Microbiol Biotechnol, 2010, 87(4): 1437-1446.

[227]

Rodrigues RC, Ortiz C, Berenguer-Murcia Á, Torres R, Fernández-Lafuente R. Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev, 2013, 42(15): 6290-6307.

[228]

Rodríguez-Zúñiga UF, Neto VB, Couri S, Crestana S, Farinas CS. Use of spectroscopic and imaging techniques to evaluate pretreated sugarcane bagasse as a substrate for cellulase production under solid-state fermentation. Appl Biochem Biotechnol, 2014, 172(5): 2348-2362.

[229]

Romero-Cascales I, Ros-García J, López-Roca J, Gómez-Plaza E. The effect of a commercial pectolytic enzyme on grape skin cell wall degradation and colour evolution during the maceration process. Food Chem, 2012, 130(3): 626-631.

[230]

Royvaran M, Taheri-Kafrani A, Isfahani AL, Mohammadi S. Functionalized superparamagnetic graphene oxide nanosheet in enzyme engineering: a highly dispersive, stable and robust biocatalyst. Chem Eng J, 2016, 288: 414-422.

[231]

Sadhu S, Ghosh PK, De TK, Maiti TK. Optimization of cultural condition and synergistic effect of lactose with carboxymethyl cellulose on cellulase production by Bacillus sp. isolated from fecal matter of elephant (Elephas maximus). Adv Appl Microbiol, 2013, 3(3): 1-9.

[232]

Sadhu S, Saha P, Sen SK, Mayilraj S, Maiti TK. Production, purification and characterization of a novel thermotolerant endoglucanase (CMCase) from Bacillus strain isolated from cow dung. Springerplus, 2013, 2(10): 1-10.

[233]

Saha K, Verma P, Sikder J, Chakraborty S, Curcio S. Synthesis of chitosan-cellulase nanohybrid and immobilization on alginate beads for hydrolysis of ionic liquid pretreated sugarcane bagasse. Renew Energy, 2019, 133: 66-76.

[234]

Saini R, Saini JK, Adsul M, Patel AK, Mathur A, Tuli D, Singhania RR. Enhanced cellulase production by Penicillium oxalicum for bio-ethanol application. Bioresour Technol, 2015, 188: 240-246.

[235]

Saini A, Aggarwal NK, Yadav A. Cost-effective cellulase production using Parthenium hysterophorus biomass as an unconventional lignocellulosic substrate. 3 Biotech, 2017, 7(12): 1-11.

[236]

Sakamoto K, Toyohara H. Molecular cloning of glycoside hydrolase family 45 cellulase genes from brackish water clam Corbicula japonica. Comp Biochem Physiol B Biochem Mol Biol, 2009, 152(4): 390-396.

[237]

Sandri IG, Fontana RC, Barfknecht DM, da Silveira MM. Clarification of fruit juices by fungal pectinases. LWT Food Sci Technol, 2011, 44(10): 2217-2222.

[238]

Scharf ME, Wu-Scharf D, Pittendrigh BR, Bennett GW. Caste-and development-associated gene expression in a lower termite. Genome Biol, 2003, 4.

[239]

Scordia D, Cosentino SL, Jeffries TW. Effectiveness of dilute oxalic acid pretreatment of Miscanthus× giganteus biomass for ethanol production. Biomass Bioenergy, 2013, 59: 540-548.

[240]

Seidl V, Gamauf C, Druzhinina IS, Seiboth B, Hartl L, Kubicek CP. The Hypocrea jecorina (Trichoderma reesei) hypercellulolytic mutant RUT C30 lacks a 85 kb (29 gene-encoding) region of the wild-type genome. BMC Genom, 2008, 99(327): 1-15.

[241]

Selvam K, Senbagam D, Selvankumar T, Sudhakar C, Kamala-Kannan S, Senthilkumar B, Govarthanan M. Cellulase enzyme: homology modeling, binding site identification and molecular docking. J Mol Struct, 2017, 1150: 61-67.

[242]

Seow N, Yang KL. Hollow cross-linked enzyme aggregates (h-CLEA) of laccase with high uniformity and activity. Colloid Surface B Inter, 2017, 151: 88-94.

[243]

Sepehri A, Sarrafzadeh MH, Avateffazeli M. Interaction between Chlorella vulgaris and nitrifying-enriched activated sludge in the treatment of wastewater with low C/N ratio. J Clean Prod, 2020, 247.

[244]

Shah F, Ranawat B, Dubey S, Mishra S. Optimization of fermentation conditions for higher cellulase production using marine Bacillus licheniformis KY962963: an epiphyte of Chlorococcum sp. Biocatal Agric Biotechnol, 2021, 29: 102047.

[245]

Shajahan S, Moorthy IG, Sivakumar N, Selvakumar G. Statistical modeling and optimization of cellulase production by Bacillus licheniformis NCIM 5556 isolated from the hot spring, Maharashtra, India. J King Saud Univ Sci, 2017, 29(3): 302-310.

[246]

Sharma NK, Jha K. Molecular docking: an overview. J Adv Sci Res, 2010, 1(1): 67-72.

[247]

Sharma A, Tewari R, Rana SS, Soni R, Soni SK. Cellulases: classification, methods of determination and industrial applications. Appl Biochem Biotechnol, 2016, 179(8): 1346-1380.

[248]

Sheldon RA. Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs). Appl Microbiol Biotechnol, 2011, 92(3): 467-477.

[249]

Sheldon RA. Cross-linked enzyme aggregates as industrial biocatalysts. Org Process Res Dev, 2011, 15(1): 213-223.

[250]

Shewale SD, Pandit AB. Enzymatic production of glucose from different qualities of grain sorghum and application of ultrasound to enhance the yield. Carbohydr Res, 2009, 344(1): 52-60.

[251]

Shi K, Huang X, Sun B, Wu Z, He J, Jiang P. Cellulose/BaTiO3 aerogel paper based flexible piezoelectric nanogenerators and the electric coupling with triboelectricity. Nano Energy, 2019, 57: 450-458.

[252]

Silva A, Santos L, Valença R, Porto T, Sobrinho MDM, Gomes G, Jucá J, Santos A. Cellulase production to obtain biogas from passion fruit (Passiflora edulis) peel waste hydrolysate. J Environ Chem Eng, 2019, 7(6): 103510.

[253]

Singh RK, Tiwari MK, Singh R, Lee JK. From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. Int J Mol Sci, 2013, 14(1): 1232-1277.

[254]

Singh S, Dikshit PK, Moholkar VS, Goyal A. Purification and characterization of acidic cellulase from Bacillus amyloliquefaciens SS35 for hydrolyzing Parthenium hysterophorus biomass. Environ Prog Sustain Energy, 2015, 34(3): 810-818.

[255]

Singh R, Kumar M, Mittal A, Mehta PK. Microbial enzymes: industrial progress in 21st century. 3 Biotech, 2016, 6(174): 1-15.

[256]

Singh J, Kapoor N, Verma A. A study to evaluate the effect of phyto-silver nanoparticles synthesized using Oxalis stricta plant leaf extract on extracellular fungal amylase and cellulase. Mater Today Proc, 2019, 18: 1342-1350.

[257]

Siqueira G, Arantes V, Saddler JN, Ferraz A, Milagres AM. Limitation of cellulose accessibility and unproductive binding of cellulases by pretreated sugarcane bagasse lignin. Biotechnol Biofuels, 2017, 10(1): 1-2.

[258]

Soares-Silva I. The role of the gut microbiome on chronic kidney disease. Adv Appl Microbiol, 2016, 96: 65-94.

[259]

Sojitra UV, Nadar SS, Rathod VK. Immobilization of pectinase onto chitosan magnetic nanoparticles by macromolecular cross-linker. Carbohydr Polym, 2017, 157: 677-685.

[260]

Song X, Liu Q, Mao J, Wu Y, Li Y, Gao K, Zhang X, Bai Y, Xu H, Qiao M. POT1-mediated δ-integration strategy for high-copy, stable expression of heterologous proteins in Saccharomyces cerevisiae. FEMS Yeast Res, 2017, 17.

[261]

Spiridonov V, Liu X, Zezin S, Panova I, Sybachin A, Yaroslavov A. Hybrid nanocomposites of carboxymethyl cellulose cross-linked by in-situ formed Cu2O nanoparticles for photocatalytic applications. J Organomet Chem, 2020, 914.

[262]

Sriariyanun M, Tantayotai P, Yasurin P, Pornwongthong P, Cheenkachorn K. Production, purification and characterization of an ionic liquid tolerant cellulase from Bacillus sp. isolated from rice paddy field soil. Electron J Biotechnol, 2016, 19: 23-28.

[263]

Srinubabu G, Raju CA, Sarath N, Kumar PK, Rao JS. Development and validation of a HPLC method for the determination of voriconazole in pharmaceutical formulation using an experimental design. Talanta, 2007, 71(3): 1424-1429.

[264]

Su Z, Yang X, Shao H, Yu S. Cellulase immobilization properties and their catalytic effect on cellulose hydrolysis in ionic liquid. Afr J Microbiol Res, 2012, 6(1): 64-70.

[265]

Sugimura M, Watanabe H, Lo N, Saito H. Purification, characterization, cDNA cloning and nucleotide sequencing of a cellulase from the yellow-spotted longicorn beetle, Psacothea hilaris. Eur J Biochem, 2003, 270(16): 3455-3460.

[266]

Sui Y, Cui Y, Xia G, Peng X, Yuan G, Sun G. A facile route to preparation of immobilized cellulase on olyurea microspheres for improving catalytic activity and stability. Process Biochem, 2019, 87: 73-82.

[267]

Sukumaran RK, Singhania RR, Mathew GM, Pandey A. Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew Energy, 2009, 34(2): 421-424.

[268]

Swathy R, Rambabu K, Banat F, Ho SH, Chu DT, Show PL. Production and optimization of high grade cellulase from waste date seeds by Cellulomonas uda NCIM 2353 for biohydrogen production. Int J Hydrog Energy, 2019, 45(42): 22260-22270.

[269]

Syuan KY, Ai LOG, Suan TK. Evaluation of cellulase and xylanase production from Trichoderma harzianum using acid-treated rice straw as solid substrate. Mater Today Proc, 2018, 5(10): 22109-22117.

[270]

Szijártó N, Siika-Aho M, Tenkanen M, Alapuranen M, Vehmaanperä J, Réczey K, Viikari L. Hydrolysis of amorphous and crystalline cellulose by heterologously produced cellulases of Melanocarpus albomyces. J Biotechnol, 2008, 136(3–4): 140-147.

[271]

Tahir M, Saleh F, Ohtsuka A, Hayashi K. Synergistic effect of cellulase and hemicellulase on nutrient utilization and performance in broilers fed a corn–soybean meal diet. Anim Sci J, 2005, 76(6): 559-565.

[272]

Tang B, Pan H, Tang W, Zhang Q, Ding L, Zhang F. Fermentation and purification of cellulase from a novel strain Rhizopus stolonifer var. reflexus TP-02. Biomass Bioenergy, 2012, 36: 366-372.

[273]

Tapre A, Jain R. Pectinases: enzymes for fruit processing industry. Int Food Res J, 2014, 21(2): 447-453.

[274]

Teter SA, Sutton KB, Emme B. Enzymatic processes and enzyme development in biorefining. Advances in biorefineries, 2014, Sawston: Woodhead Publishing, 199-233.

[275]

Thapa S, Mishra J, Arora N, Mishra P, Li H, O′ Hair J, Bhatti S, Zhou S. Microbial cellulolytic enzymes: diversity and biotechnology with reference to lignocellulosic biomass degradation. Rev Environ Sci Biotechnol, 2020, 19: 621-648.

[276]

Thomas B, Raj MC, Joy J, Moores A, Drisko GL, Sanchez CM. Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem Rev, 2018, 118(24): 11575-11625.

[277]

Thulluri C, Balasubramaniam R, Velankar HR. Generation of highly amenable cellulose-Iβ via selective delignification of rice straw using a reusable cyclic ether-assisted deep eutectic solvent system. Sci Rep, 2021, 11(1): 1-4.

[278]

Tian C, Zheng L, Miao Q, Cao C, Ni Y. Improving the reactivity of kraft-based dissolving pulp for viscose rayon production by mechanical treatments. Cellulose, 2014, 21(5): 3647-3654.

[279]

Tokuda G, Watanabe H, Lo N. Does correlation of cellulase gene expression and cellulolytic activity in the gut of termite suggest synergistic collaboration of cellulases?. Gene, 2007, 401(1–2): 131-134.

[280]

Transparency Market Research (TMR) (2021) Global cellulase market—global industry analysis, size, share, growth, trends, and forecast 2018–2026 Rep Id: TMRGL60753. https://www.transparencymarketresearch.com/cellulase-market.html. Accessed 27 Aug 2021

[281]

Tsai CF, Qiu X, Liu JH. A comparative analysis of two cDNA clones of the cellulase gene family from anaerobic fungus Piromyces rhizinflata. Anaerobe, 2003, 9(3): 131-140.

[282]

Uncu ON, Cekmecelioglu D. Cost-effective approach to ethanol production and optimization by response surface methodology. Waste Manag, 2011, 31(4): 636-643.

[283]

Ungurean M, Paul C, Peter F. Cellulase immobilized by sol–gel entrapment for efficient hydrolysis of cellulose. Bioprocess Biosyst Eng, 2013, 36(10): 1327-1338.

[284]

USDA (2021) World agricultural production, United States Department of Agriculture, WAP 8–21 August 2021. https://apps.fas.usda.gov/psdonline/circulars/production.pdf. Accessed 28 Aug 2021

[285]

Vaillant F, Millan A, Dornier M, Decloux M, Reynes M. Strategy for economical optimisation of the clarification of pulpy fruit juices using crossflow microfiltration. J Food Eng, 2001, 48(1): 83-90.

[286]

Van Heiningen A (2006) Converting a kraft pulp mill into an integrated forest biorefinery. Pulp Pap Canada 107(6):38–43

[287]

Vasconcellos V, Tardioli P, Giordano R, Farinas C. Production efficiency versus thermostability of (hemi) cellulolytic enzymatic cocktails from different cultivation systems. Process Biochem, 2015, 50(11): 1701-1709.

[288]

Velmurugan R, Incharoensakdi A. MgO-Fe3O4 linked cellulase enzyme complex improves the hydrolysis of cellulose from Chlorella sp. CYB2. Biochem Eng J, 2017, 122: 22-30.

[289]

Verardi A, De Bari I, Ricca E, Calabrò V (2012) Hydrolysis of lignocellulosic biomass: current status of processes and technologies and future perspectives. In: Bioethanol. pp 95–122

[290]

Verma N, Kumar V. Impact of process parameters and plant polysaccharide hydrolysates in cellulase production by Trichoderma reesei and Neurospora crassa under wheat bran based solid state fermentation. Biotechnol Rep, 2020, 25.

[291]

Verma N, Bansal MC, Kumar V. Pea peel waste: a lignocellulosic waste and its utility in cellulase production by Trichoderma reesei under solid state cultivation. BioResources, 2011, 6(2): 1505-1519.

[292]

Verma N, Kumar V, Bansal MC. Utility of Luffa cylindrica and Litchi chinensis peel, an agricultural waste biomass in cellulase production by Trichoderma reesei under solid state cultivation. Biocatal Agric Biotechnol, 2018, 16: 483-492.

[293]

Wang J, Ding M, Li YH, Chen QX, Xu GJ, Zhao FK. A monovalent anion affected multi-functional cellulase EGX from the mollusca, Ampullaria crossean. Protein Expr Purif, 2003, 31(1): 108-114.

[294]

Wang J, Guo L, Zhang K, Wu Q, Lin J. Highly efficient Agrobacterium-mediated transformation of Volvariella volvacea. Bioresour Technol, 2008, 99(17): 8524-8527.

[295]

Wang W, Zhuang X, Yuan Z, Yu Q, Qi W, Wang Q, Tan X. High consistency enzymatic saccharification of sweet sorghum bagasse pretreated with liquid hot water. Bioresour Technol, 2012, 108: 252-257.

[296]

Wang H, Pang B, Wu K, Kong F, Li B, Mu X. Two stages of treatments for upgrading bleached softwood paper grade pulp to dissolving pulp for viscose production. Biochem Eng J, 2014, 82: 183-187.

[297]

Wang Q, Liu S, Yang G, Chen J, Ji X, Ni Y. Recycling cellulase towards industrial application of enzyme treatment on hardwood kraft-based dissolving pulp. Bioresour Technol, 2016, 212: 160-163.

[298]

Wang Y, Chen D, Wang G, Zhao C, Ma Y, Yang W. Immobilization of cellulase on styrene/maleic anhydride copolymer nanoparticles with improved stability against pH changes. Chem Eng J, 2018, 336: 152-159.

[299]

Wang H, Zhai L, Geng A. Enhanced cellulase and reducing sugar production by a new mutant strain Trichoderma harzianum EUA20. J Biosci Bioeng, 2020, 129(2): 242-249.

[300]

Wang Q, Fu X, Liu S, Ji X, Wang Y, He H, Yang G, Chen J. Understanding the effect of depth refining on upgrading of dissolving pulp during cellulase treatment. Ind Crops Prod, 2020, 144.

[301]

Willis JD, Grant JN, Mazarei M, Kline LM, Rempe CS, Collins AG, Turner GB, Decker SR, Sykes RW, Davis MF, Labbe N. The TcEG1 beetle (Tribolium castaneum) cellulase produced in transgenic switchgrass is active at alkaline pH and auto-hydrolyzes biomass for increased cellobiose release. Biotechnol Biofuels, 2017, 10(1): 1-5.

[302]

Won K, Kim S, Kim KJ, Park HW, Moon SJ. Optimization of lipase entrapment in Ca-alginate gel beads. Process Biochem, 2005, 40(6): 2149-2154.

[303]

Wu W, He Q, Jiang C. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett, 2008, 3: 397-415.

[304]

Xu J, He B, Wu B, Wang B, Wang C, Hu L. An ionic liquid tolerant cellulase derived from chemically polluted microhabitats and its application in in situ saccharification of rice straw. Bioresour Technol, 2014, 157: 166-173.

[305]

Xue DS, Liang LY, Zheng G, Lin DQ, Zhang QL, Yao SJ. Expression of Piromyces rhizinflata cellulase in marine Aspergillus niger to enhance halostable cellulase activity by adjusting enzyme-composition. Biochem Eng J, 2017, 117: 156-161.

[306]

Xue D, Lin D, Gong C, Peng C, Yao S. Expression of a bifunctional cellulase with exoglucanase and endoglucanase activities to enhance the hydrolysis ability of cellulase from a marine Aspergillus niger. Process Biochem, 2017, 52: 115-122.

[307]

Xue D, Jiang Y, Gong C. Exogenous xylanase expression simultaneously with the indigenous cellulase to increase the cellulose hydrolysis efficiency. Int Biodeter Biodegr, 2019, 140: 126-132.

[308]

Xue D, Yao D, Sukumaran RK, You X, Wei Z, Gong C. Tandem integration of aerobic fungal cellulase production, lignocellulose substrate saccharification and anaerobic ethanol fermentation by a modified gas lift bioreactor. Bioresour Technol, 2020, 302.

[309]

Yadav A, Ali AAM, Ingawale M, Raychaudhuri S, Gantayet LM, Pandit A. Enhanced co-production of pectinase, cellulase and xylanase enzymes from Bacillus subtilis ABDR01 upon ultrasonic irradiation. Process Biochem, 2020, 92: 197-201.

[310]

Yamaguchi H, Kiyota Y, Miyazaki M. Techniques for preparation of cross-linked enzyme aggregates and their applications in bioconversions. Catalysts, 2018, 8(174): 1-16.

[311]

Yang P, Guo L, Cheng S, Lou N, Lin J. Recombinant multi-functional cellulase activity in submerged fermentation of lignocellulosic wastes. Renew Energy, 2011, 36(12): 3268-3272.

[312]

Yarbrough JM, Mittal A, Mansfield E, Taylor LE, Hobdey SE, Sammond DW, Bomble YJ, Crowley MF, Decker SR, Himmel ME. New perspective on glycoside hydrolase binding to lignin from pretreated corn stover. Biotechnol Biofuels, 2015, 8(214): 1-14.

[313]

Yu HY, Li X. Alkali-stable cellulase from a halophilic isolate, Gracilibacillus sp. SK1 and its application in lignocellulosic saccharification for ethanol production. Biomass Bioenergy, 2015, 81: 19-25.

[314]

Zabed H, Sahu J, Boyce AN, Faruq G. Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sustain Energy Rev, 2016, 66: 751-774.

[315]

Zhang YHP, Himmel ME, Mielenz JR. Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv, 2006, 24(5): 452-481.

[316]

Zhang Q, Kang J, Yang B, Zhao L, Hou Z, Tang B. Immobilized cellulase on Fe O nanoparticles as a magnetically recoverable biocatalyst for the decomposition of corncob. Chin J Catal, 2016, 37(3): 389-397.

[317]

Zhao C, Xie B, Zhao R, Fang H. Microbial oil production by Mortierella isabellina from sodium hydroxide pretreated rice straw degraded by three-stage enzymatic hydrolysis in the context of on-site cellulase production. Renew Energy, 2019, 130: 281-289.

[318]

Zheng L, Du Y, Zhang J. Degumming of ramie fibers by alkalophilic bacteria and their polysaccharide-degrading enzymes. Bioresour Technol, 2001, 78(1): 89-94.

[319]

Zhong YH, Wang XL, Wang TH, Jiang Q. Agrobacterium-mediated transformation (AMT) of Trichoderma reesei as an efficient tool for random insertional mutagenesis. Appl Microb Biotechnol, 2007, 73(6): 1348-1354.

[320]

Zhong Y, Yu H, Wang X, Lu Y, Wang T. Towards a novel efficient T-DNA-based mutagenesis and screening system using green fluorescent protein as a vital reporter in the industrially important fungus Trichoderma reesei. Mol Biol Rep, 2011, 38(6): 4145-4151.

[321]

Zhong Y, Wang X, Yu H, Liang S, Wang T. Application of T-DNA insertional mutagenesis for improving cellulase production in the filamentous fungus Trichoderma reesei. Bioresour Technol, 2012, 110: 572-577.

[322]

Zhou X, Smith JA, Oi FM, Koehler PG, Bennett GW, Scharf ME. Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes. Gene, 2007, 395(1–2): 29-39.

[323]

Zhuang J, Marchant MA, Nokes SE, Strobel HJ. Economic analysis of cellulase production methods for bio-ethanol. Appl Eng Agric, 2007, 23(5): 679-687.

Funding

department of biotechnology, ministry of science and technology(BT/304/NE/TBP/2012)

AI Summary AI Mindmap
PDF

243

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/