Discovery of a readily heterologously expressed Rubisco from the deep sea with potential for CO2 capture

Junli Zhang , Guoxia Liu , Alonso I. Carvajal , Robert H. Wilson , Zhen Cai , Yin Li

Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 86

PDF
Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 86 DOI: 10.1186/s40643-021-00439-6
Research

Discovery of a readily heterologously expressed Rubisco from the deep sea with potential for CO2 capture

Author information +
History +
PDF

Abstract

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the key CO2-fixing enzyme in photosynthesis, is notorious for its low carboxylation. We report a highly active and assembly-competent Form II Rubisco from the endosymbiont of a deep-sea tubeworm Riftia pachyptila (RPE Rubisco), which shows a 50.5% higher carboxylation efficiency than that of a high functioning Rubisco from Synechococcus sp. PCC7002 (7002 Rubisco). It is a simpler hexamer with three pairs of large subunit homodimers around a central threefold symmetry axis. Compared with 7002 Rubisco, it showed a 3.6-fold higher carbon capture efficiency in vivo using a designed CO2 capture model. The simple structure, high carboxylation efficiency, easy heterologous soluble expression/assembly make RPE Rubisco a ready-to-deploy enzyme for CO2 capture that does not require complex co-expression of chaperones. The chemosynthetic CO2 fixation machinery of chemolithoautotrophs, CO2-fixing endosymbionts, may be more efficient than previously realized with great potential for next-generation microbial CO2 sequestration platforms.

Keywords

Rubisco / Riftia pachyptila endosymbiont / Form II / Hexamer / CO2 capture in vivo

Cite this article

Download citation ▾
Junli Zhang, Guoxia Liu, Alonso I. Carvajal, Robert H. Wilson, Zhen Cai, Yin Li. Discovery of a readily heterologously expressed Rubisco from the deep sea with potential for CO2 capture. Bioresources and Bioprocessing, 2021, 8(1): 86 DOI:10.1186/s40643-021-00439-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams PD, Grosse-Kunstleve RW, Hung LW, Ioerger TR, McCoy AJ, Moriarty NW, Read RJ, Sacchettini JC, Sauter NK, Terwilliger TC. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr, 2002, 58: 1948-1954.

[2]

Aigner H, Wilson RH, Bracher A, Calisse L, Bhat JY, Hartl FU, Hayer-Hartl M. Plant RuBisCo assembly in E. coli with five chloroplast chaperones including BSD2. Science, 2017, 358: 1272.

[3]

Andersson I, Tjader AC, Cedergren-Zeppezauer E, Branden CI. Crystallization and preliminary x-ray studies of spinach ribulose 1,5-bisphosphate carboxylase/oxygenase complexed with activator and a transition state analogue. J Biol Chem, 1983, 258: 14088-14090.

[4]

Banda DM, Pereira JH, Liu AK, Orr DJ, Hammel M, He C, Parry MAJ, Carmo-Silva E, Adams PD, Banfield JF, Shih PM. Novel bacterial clade reveals origin of form I Rubisco. Nat Plants, 2020, 6: 1158-1166.

[5]

Cai Z, Liu GX, Zhang JL, Li Y. Development of an activity-directed selection system enabled significant improvement of the carboxylation efficiency of Rubisco. Protein Cell, 2014, 5: 552-562.

[6]

Childress JJ, Lee RW, Sanders NK, Felbeck H, Oros DR, Toulmond A, Desbruyeres D, Kennicutt MC, Brooks J. Inorganic carbon uptake in hydrothermal vent tubeworms facilitated by high environmental pCO2. Nature, 1993, 362: 147-149.

[7]

Cleland WW, Andrews TJ, Gutteridge S, Hartman FC, Lorimer GH. Mechanism of Rubisco: The carbamate as general base. Chem Rev, 1998, 98: 549-561.

[8]

Davidi D, Shamshoum M, Guo ZJ, Bar-On YM, Prywes N, Oz A, Jablonska J, Flamholz A, Wernick DG, Antonovsky N, de Pins B, Shachar L, Hochhauser D, Peleg Y, Albeck S, Sharon I, Mueller-Cajar O, Milo R. Highly active rubiscos discovered by systematic interrogation of natural sequence diversity. Embo J, 2020

[9]

Dobrinski KP, Longo DL, Scott KM. The carbon-concentrating mechanism of the hydrothermal vent chemolithoautotroph Thiomicrospira crunogena. J Bacteriol, 2005, 187: 5761-5766.

[10]

Durao P, Aigner H, Nagy P, Mueller-Cajar O, Hartl FU, Hayer-Hartl M. Opposing effects of folding and assembly chaperones on evolvability of Rubisco. Nat Chem Biol, 2015, 11: 148-U94.

[11]

Emlyn-Jones D, Woodger FJ, Price GD, Whitney SM. RbcX can function as a Rubisco chaperonin, but is non-essential in Synechococcus PCC7942. Plant Cell Physiol, 2006, 47: 1630-40.

[12]

Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr, 2004, 60: 2126-32.

[13]

Galmes J, Kapralov MV, Andralojc PJ, Conesa MA, Keys AJ, Parry MA, Flexas J. Expanding knowledge of the Rubisco kinetics variability in plant species: environmental and evolutionary trends. Plant Cell Environ, 2014, 37: 1989-2001.

[14]

Gassler T, Sauer M, Gasser B, Egermeier M, Troyer C, Causon T, Hann S, Mattanovich D, Steiger MG. The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2. Nat Biotechnol, 2020, 38: 210.

[15]

Gleizer S, Ben-Nissan R, Bar-On YM, Antonovsky N, Noor E, Zohar Y, Jona G, Krieger E, Shamshoum M, Bar-Even A, Milo R. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell, 2019, 179: 1255.

[16]

Gong FY, Liu GX, Zhai XY, Zhou J, Cai Z, Li Y. Quantitative analysis of an engineered CO2-fixing Escherichia coli reveals great potential of heterotrophic CO2 fixation. Biotechnol Biofuels, 2015

[17]

Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol, 2003, 52: 696-704.

[18]

Gunn LH, Martin Avila E, Birch R, Whitney SM. The dependency of red Rubisco on its cognate activase for enhancing plant photosynthesis and growth. Proc Natl Acad Sci U S A, 2020, 117: 25890-6.

[19]

Hanson DT. Breaking the rules of Rubisco catalysis. J Exp Bot, 2016, 67: 3180-2.

[20]

Higgins CF, Hiles ID, Salmond GP, Gill DR, Downie JA, Evans IJ, Holland IB, Gray L, Buckel SD, Bell AW, . A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature, 1986, 323: 448-50.

[21]

Hinzke T, Kleiner M, Meister M, Schluter R, Hentschker C, Pane-Farre J, Hildebrandt P, Felbeck H, Sievert SM, Bonn F, Volker U, Becher D, Schweder T, Markert S. Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis. Elife, 2021

[22]

Hudson GS, Morell MK, Arvidsson YBC, Andrews TJ. Synthesis of spinach phosphoribulokinase and ribulose 1,5-bisphosphate in Escherichia coli. Aust J Plant Physiol, 1992, 19: 213-21.

[23]

Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res, 2002, 30: 3059-66.

[24]

Kubien DS, Brown CM, Kane HJ. Quantifying the amount and activity of Rubisco in leaves. Methods Mol Biol, 2011, 684: 349-62.

[25]

Laskowski RA, Macarthur MW, Moss DS, Thornton JM. Procheck - a program to check the stereochemical quality of protein structures. J Appl Crystallogr, 1993, 26: 283-91.

[26]

Li YN, Liles MR, Halanych KM. Endosymbiont genomes yield clues of tubeworm success. Isme J, 2018, 12: 2785-95.

[27]

Lin MT, Occhialini A, Andralojc PJ, Parry MA, Hanson MR. A faster Rubisco with potential to increase photosynthesis in crops. Nature, 2014, 513: 547-50.

[28]

Lutz RA, Shank TM, Fornari DJ, Haymon RM, Lilley MD, Vondamm KL, Desbruyeres D. Rapid growth at deep-sea vents. Nature, 1994, 371: 663-4.

[29]

Mueller-Cajar O, Morell M, Whitney SM. Directed evolution of Rubisco in Escherichia coli reveals a specificity-determining hydrogen bond in the form II enzyme. Biochemistry-Us, 2007, 46: 14067-74.

[30]

Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr, 1997, 53: 240-55.

[31]

Occhialini A, Lin MT, Andralojc PJ, Hanson MR, Parry MAJ. Transgenic tobacco plants with improved cyanobacterial Rubisco expression but no extra assembly factors grow at near wild-type rates if provided with elevated CO2. Plant J, 2016, 85: 148-60.

[32]

Orr DJ, Worrall D, Lin MT, Carmo-Silva E, Hanson MR, Parry MAJ. Hybrid cyanobacterial-tobacco Rubisco supports autotrophic growth and procarboxysomal aggregation. Plant Physiol, 2020, 182: 807-18.

[33]

Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol, 1997, 276: 307-326.

[34]

Pierce J, Tolbert NE, Barker R. Interaction of ribulosebisphosphate carboxylase/oxygenase with transition-state analogues. Biochemistry-Us, 1980, 19: 934-42.

[35]

Price GD, Pengelly JJL, Forster B, Du JH, Whitney SM, von Caemmerer S, Badger MR, Howitt SM, Evans JR. The cyanobacterial CCM as a source of genes for improving photosynthetic CO2 fixation in crop species. J Exp Bot, 2013, 64: 753-68.

[36]

Robinson JJ, Stein JL, Cavanaugh CM. Cloning and sequencing of a form II ribulose-1,5-biphosphate carboxylase/oxygenase from the bacterial symbiont of the hydrothermal vent tubeworm Riftia pachyptila. J Bacteriol, 1998, 180: 1596-1599.

[37]

Robinson JJ, Scott KM, Swanson ST, O'Leary MH, Horken K, Tabita FR, Cavanaugh CM. Kinetic isotope effect and characterization of form II Rubisco from the chemoautotrophic endosymbionts of the hydrothermal vent tubeworm Riftia pachyptila. Limnol Oceanogr, 2003, 48: 48-54.

[38]

Satagopan S, Chan S, Perry LJ, Tabita FR. Structure-function studies with the unique hexameric Form II Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from Rhodopseudomonas palustris. J Biol Chem, 2014, 289: 21433-50.

[39]

Sela I, Ashkenazy H, Katoh K, Pupko T. GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Res, 2015, 43: W7-14.

[40]

Soini J, Ukkonen K, Neubauer P. High cell density media for Escherichia coli are generally designed for aerobic cultivations - consequences for large-scale bioprocesses and shake flask cultures. Microb Cell Fact, 2008, 7: 26.

[41]

Tabita FR, Satagopan S, Hanson TE, Kreel NE, Scott SS. Distinct form I, II, III, and IV Rubisco proteins from the three kingdoms of life provide clues about Rubisco evolution and structure/function relationships. J Exp Bot, 2008, 59: 1515-24.

[42]

Takai K, Nealson KH, Horikoshi K. Hydrogenimonas thermophila gen. nov., sp nov., a novel thermophilic, hydrogen-oxidizing chemolithoautotroph within the epsilon-Proteobacteria, isolated from a black smoker in a central indian ridge hydrothermal field. Int J Syst Evol Micr, 2004, 54: 25-32.

[43]

Tseng IT, Chen YL, Chen CH, Shen ZX, Yang CH, Li SY. Exceeding the theoretical fermentation yield in mixotrophic Rubisco-based engineered Escherichia coli. Metab Eng, 2018, 47: 445-52.

[44]

Varaljay VA, Satagopan S, North JA, Witte B, Dourado MN, Anantharaman K, Arbing MA, McCann SH, Oremland RS, Banfield JF, Wrighton KC, Tabita FR. Functional metagenomic selection of ribulose 1,5-bisphosphate carboxylase/oxygenase from uncultivated bacteria. Environ Microbiol, 2016, 18: 1187-99.

[45]

Whitney SM, Andrews TJ. Photosynthesis and growth of tobacco with a substituted bacterial rubisco mirror the properties of the introduced enzyme. Plant Physiol, 2003, 133: 287-94.

[46]

Whitney SM, Houtz RL, Alonso H. Advancing our understanding and capacity to engineer nature's CO2-sequestering enzyme, Rubisco. Plant Physiol, 2011, 155: 27-35.

[47]

Wilson RH, Martin-Avila E, Conlan C, Whitney SM. An improved Escherichia coli screen for Rubisco identifies a protein-protein interface that can enhance CO2-fixation kinetics. J Biol Chem, 2018, 293: 18-27.

[48]

Wilson RH, Hayer-Hartl M, Bracher A. Crystal structure of phosphoribulokinase from Synechococcus sp. strain PCC 6301. Acta Crystallogr F Struct Biol Commun, 2019, 75: 278-89.

[49]

Wilson RH, Thieulin-Pardo G, Hartl FU, Hayer-Hartl M. Improved recombinant expression and purification of functional plant Rubisco. Febs Lett, 2019, 593: 611-21.

[50]

Yang CH, Liu EJ, Chen YL, Ou-Yang FY, Li SY. The comprehensive profile of fermentation products during in situ CO2 recycling by Rubisco-based engineered Escherichia coli. Microb Cell Fact, 2016, 15: 133.

[51]

Yang F, Zhang J, Cai Z, Zhou J, Li Y. Exploring the oxygenase function of Form II Rubisco for production of glycolate from CO(2). AMB Express, 2021, 11: 65.

[52]

Zhou Y, Whitney S. Directed evolution of an improved Rubisco; In vitro analyses to decipher fact from fiction. Int J Mol Sci, 2019

[53]

Zhuang ZY, Li SY. Rubisco-based engineered Escherichia coli for in situ carbon dioxide recycling. Bioresour Technol, 2013, 150: 79-88.

Funding

the National Natural Science Foundation of China(2150060111)

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/