Mining methods and typical structural mechanisms of terpene cyclases

Zheng-Yu Huang , Ru-Yi Ye , Hui-Lei Yu , Ai-Tao Li , Jian-He Xu

Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 66

PDF
Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 66 DOI: 10.1186/s40643-021-00421-2
Review

Mining methods and typical structural mechanisms of terpene cyclases

Author information +
History +
PDF

Abstract

Terpenoids, formed by cyclization and/or permutation of isoprenes, are the most diverse and abundant class of natural products with a broad range of significant functions. One family of the critical enzymes involved in terpenoid biosynthesis is terpene cyclases (TCs), also known as terpene synthases (TSs), which are responsible for forming the ring structure as a backbone of functionally diverse terpenoids. With the recent advances in biotechnology, the researches on terpene cyclases have gradually shifted from the genomic mining of novel enzyme resources to the analysis of their structures and mechanisms. In this review, we summarize both the new methods for genomic mining and the structural mechanisms of some typical terpene cyclases, which are helpful for the discovery, engineering and application of more and new TCs.

Keywords

Terpene cyclases / Biochemical properties / Review / Genomic mining / Structural analysis / Catalytic mechanisms

Cite this article

Download citation ▾
Zheng-Yu Huang, Ru-Yi Ye, Hui-Lei Yu, Ai-Tao Li, Jian-He Xu. Mining methods and typical structural mechanisms of terpene cyclases. Bioresources and Bioprocessing, 2021, 8(1): 66 DOI:10.1186/s40643-021-00421-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aaron JA, Christianson DW. Trinuclear metal clusters in catalysis by terpenoid synthases. Pure Appl Chem, 2010, 82(8): 1585-1597.

[2]

Aaron JA, Lin X, Cane DE, Christianson DW. Structure of epi-isozizaene synthase from Streptomyces coelicolor A3(2), a platform for new terpenoid cyclization templates. Biochemistry, 2010, 49(8): 1787-1797.

[3]

Alves Gomes Albertti L, Delatte TL, Souza de Farias K, Galdi Boaretto A, Verstappen F, van Houwelingen A, Cankar K, Carollo CA, Bouwmeester HJ, Beekwilder J. Identification of the bisabolol synthase in the endangered Candeia tree (Eremanthus erythropappus (DC) McLeisch.). Front Plant Sci, 2018, 9: 1340.

[4]

Ansbacher T, Freud Y, Major DT. Slow-starter enzymes: role of active-site architecture in the catalytic control of the biosynthesis of taxadiene by taxadiene synthase. Biochemistry, 2018, 57(26): 3773-3779.

[5]

Attia M, Kim SU, Ro DK. Molecular cloning and characterization of (+)-epi-α-bisabolol synthase, catalyzing the first step in the biosynthesis of the natural sweetener, hernandulcin Lippia Dulcis. Arch Biochem Biophys, 2012, 527(1): 37-44.

[6]

Baer P, Rabe P, Fischer K, Citron CA, Klapschinski TA, Groll M, Dickschat JS. Induced-fit mechanism in class I terpene cyclases. Angew Chem Int Ed Engl, 2014, 53(29): 7652-7656.

[7]

Bastian SA, Hammer SC, Kreß N, Nestl BM, Hauer B. Selectivity in the cyclization of citronellal introduced by squalene hopene cyclase variants. ChemCatChem, 2017, 9(23): 4364-4368.

[8]

Basyuni M, Oku H, Tsujimoto E, Kinjo K, Baba S, Takara K. Triterpene synthases from the Okinawan mangrove tribe. Rhizophoraceae Febs J, 2007, 274(19): 5028-5042.

[9]

Beller HR, Lee TS, Katz L. Natural products as biofuels and bio-based chemicals: fatty acids and isoprenoids. Nat Prod Rep, 2015, 32(10): 1508-1526.

[10]

Bills GF, Gloer JB. Biologically active secondary metabolites from the fungi. Microbiol Spectr, 2016, 4(6): 4-6.

[11]

Blank PN, Barrow GH, Chou WKW, Duan L, Cane DE, Christianson DW. Substitution of aromatic residues with polar residues in the active site pocket of epi-isozizaene synthase leads to the generation of new cyclic sesquiterpenes. Biochemistry, 2017, 56(43): 5798-5811.

[12]

Blank PN, Barrow GH, Christianson DW. Crystal structure of F95Q epi-isozizaene synthase, an engineered sesquiterpene cyclase that generates biofuel precursors β- and γ-curcumene. J Struct Biol, 2019, 207(2): 218-224.

[13]

Boutanaev AM, Moses T, Zi J, Nelson DR, Mugford ST, Peters RJ, Osbourn A. Investigation of terpene diversification across multiple sequenced plant genomes. Proc Natl Acad Sci U S A, 2015, 112(1): E81-88.

[14]

Brehm-Stecher BF, Johnson EA. Sensitization of Staphylococcus aureus and Escherichia coli to antibiotics by the sesquiterpenoids nerolidol, farnesol, bisabolol, and apritone. Antimicrob Agents Chemother, 2003, 47(10): 3357-3360.

[15]

Brodelius M, Lundgren A, Mercke P, Brodelius PE. Fusion of farnesyldiphosphate synthase and epi-aristolochene synthase, a sesquiterpene cyclase involved in capsidiol biosynthesis in Nicotiana tabacum. Eur J Biochem, 2002, 269(14): 3570-3577.

[16]

Calvert MJ, Taylor SE, Allemann RK. Tyrosine 92 of aristolochene synthase directs cyclisation of farnesyl pyrophosphate. Chem Commun (camb), 2002, 20: 2384-2385.

[17]

Cane DE, Kang I. Aristolochene synthase: purification, molecular cloning, high-level expression in Escherichia coli, and characterization of the Aspergillus terreus cyclase. Arch Biochem Biophys, 2000, 376(2): 354-364.

[18]

Caruthers JM, Kang I, Rynkiewicz MJ, Cane DE, Christianson DW. Crystal structure determination of aristolochene synthase from the blue cheese mold Penicillium Roqueforti. J Biol Chem, 2000, 275(33): 25533-25539.

[19]

Chen M, Al-lami N, Janvier M, D'Antonio EL, Faraldos JA, Cane DE, Allemann RK, Christianson DW. Mechanistic insights from the binding of substrate and carbocation intermediate analogues to aristolochene synthase. Biochemistry, 2013, 52(32): 5441-5453.

[20]

Chen M, Chou WK, Al-Lami N, Faraldos JA, Allemann RK, Cane DE, Christianson DW. Probing the role of active site water in the sesquiterpene cyclization reaction catalyzed by aristolochene synthase. Biochemistry, 2016, 55(20): 2864-2874.

[21]

Chen M, Chou WK, Toyomasu T, Cane DE, Christianson DW. Structure and function of fusicoccadiene synthase, a hexameric bifunctional diterpene synthase. ACS Chem Biol, 2016, 11(4): 889-899.

[22]

Chen C-C, Malwal SR, Han X, Liu W, Ma L, Zhai C, Dai L, Huang J-W, Shillo A, Desai J, Ma X, Zhang Y, Guo R-T, Oldfield E. Terpene cyclases and prenyltransferases: Structures and mechanisms of action. ACS Catal, 2020, 11(1): 290-303.

[23]

Chen Q, Li J, Liu Z, Mitsuhashi T, Zhang Y, Liu H, Ma Y, He J, Shinada T, Sato T, Wang Y, Liu H, Abe I, Zhang P, Wang G. Molecular basis for sesterterpene diversity produced by plant terpene synthases. Plant Commun, 2020, 1(5): 100051.

[24]

Chiba R, Minami A, Gomi K, Oikawa H. Identification of ophiobolin f synthase by a genome mining approach: a sesterterpene synthase from Aspergillus clavatus. Org Lett, 2013, 15(3): 594-597.

[25]

Christianson DW. Structural and chemical biology of terpenoid cyclases. Chem Rev, 2017, 117(17): 11570-11648.

[26]

Croteau R, Karp F. Biosynthesis of monoterpenes: preliminary characterization of bornyl pyrophosphate synthetase from sage (Salvia officinalis) and demonstration that geranyl pyrophosphate is the preferred substrate for cyclization. Arch Biochem Biophys, 1979, 198(2): 512-522.

[27]

Croteau R, Alonso WR, Koepp AE, Johnson MA. Biosynthesis of monoterpenes: partial purification, characterization, and mechanism of action of 1,8-cineole synthase. Arch Biochem Biophys, 1994, 309(1): 184-192.

[28]

Daletos G, Katsimpouras C, Stephanopoulos G. Novel strategies and platforms for industrial isoprenoid engineering. Trends Biotechnol, 2020, 38(7): 811-822.

[29]

Das S, Shimshi M, Raz K, Nitoker Eliaz N, Mhashal AR, Ansbacher T, Major DT. EnzyDock: protein-ligand docking of multiple reactive states along a reaction coordinate in enzymes. J Chem Theory Comput, 2019, 15(9): 5116-5134.

[30]

Davis EM, Croteau R. Leeper FJ, Vederas JC. Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. Biosynthesis: aromatic polyketides, isoprenoids, alkaloids, 2000, Berlin: Springer, 53-95.

[31]

Despinasse Y, Fiorucci S, Antonczak S, Moja S, Bony A, Nicole F, Baudino S, Magnard JL, Jullien F. Bornyl-diphosphate synthase from Lavandula angustifolia: a major monoterpene synthase involved in essential oil quality. Phytochemistry, 2017, 137: 24-33.

[32]

Dickschat JS. Bacterial terpene cyclases. Nat Prod Rep, 2016, 33(1): 87-110.

[33]

Driller R, Janke S, Fuchs M, Warner E, Mhashal AR, Major DT, Christmann M, Bruck T, Loll B. Towards a comprehensive understanding of the structural dynamics of a bacterial diterpene synthase during catalysis. Nat Commun, 2018, 9(1): 3971.

[34]

Driller R, Garbe D, Mehlmer N, Fuchs M, Raz K, Major DT, Bruck T, Loll B. Current understanding and biotechnological application of the bacterial diterpene synthase CotB2. Beilstein J Org Chem, 2019, 15: 2355-2368.

[35]

Edgar S, Li FS, Qiao KJ, Weng JK, Stephanopoulos G. Engineering of taxadiene synthase for improved selectivity and yield of a key taxol biosynthetic intermediate. ACS Synth Biol, 2017, 6(2): 201-205.

[36]

Eichhorn E, Locher E, Guillemer S, Wahler D, Fourage L, Schilling B. Biocatalytic process for (-)-ambrox production using squalene hopene cyclase. Adv Synth Catal, 2018, 360(12): 2339-2351.

[37]

Fahim M, Ibrahim M, Zahiruddin S, Parveen R, Khan W, Ahmad S, Shrivastava B, Shrivastava AK. TLC-bioautography identification and GC-MS analysis of antimicrobial and antioxidant active compounds in Musa x paradisiaca L. fruit pulp essential oil. Phytochem Anal, 2019, 30(3): 332-345.

[38]

Faraldos JA, Antonczak AK, Gonzalez V, Fullerton R, Tippmann EM, Allemann RK. Probing eudesmane cation-π interactions in catalysis by aristolochene synthase with non-canonical amino acids. J Am Chem Soc, 2011, 133(35): 13906-13909.

[39]

Faraldos JA, Gonzalez V, Senske M, Allemann RK. Templating effects in aristolochene synthase catalysis: elimination versus cyclisation. Org Biomol Chem, 2011, 9(20): 6920-6923.

[40]

Faraldos JA, Gonzalez V, Allemann RK. The role of aristolochene synthase in diphosphate activation. Chem Commun (camb), 2012, 48(26): 3230-3232.

[41]

Faraldos JA, Grundy DJ, Cascon O, Leoni S, van der Kamp MW, Allemann RK. Enzymatic synthesis of natural (+)-aristolochene from a non-natural substrate. Chem Commun (camb), 2016, 52(97): 14027-14030.

[42]

Felicetti B, Cane DE. Aristolochene synthase: mechanistic analysis of active site residues by site-directed mutagenesis. J Am Chem Soc, 2004, 126(23): 7212-7221.

[43]

Forcat S, Allemann RK. Stabilisation of transition states prior to and following eudesmane cation in aristolochene synthase. Org Biomol Chem, 2006, 4(13): 2563-2567.

[44]

Freud Y, Ansbacher T, Major DT. Catalytic control in the facile proton transfer in taxadiene synthase. Acs Catal, 2017, 7(11): 7653-7657.

[45]

Fukuda Y, Watanabe T, Hoshino T. Mutated variants of squalene-hopene cyclase: enzymatic syntheses of triterpenes bearing oxygen-bridged monocycles and a new 6,6,6,6,6-fusded pentacyclic scaffold, named neogammacerane, from 2,3-oxidosqualene. Org Biomol Chem, 2018, 16(37): 8365-8378.

[46]

Gao Y, Honzatko RB, Peters RJ. Terpenoid synthase structures: a so far incomplete view of complex catalysis. Nat Prod Rep, 2012, 29(10): 1153-1175.

[47]

Gennadios HA, Gonzalez V, Di Costanzo L, Li A, Yu F, Miller DJ, Allemann RK, Christianson DW. Crystal structure of (+)-δ-cadinene synthase from Gossypium arboreum and evolutionary divergence of metal binding motifs for catalysis. Biochemistry, 2009, 48(26): 6175-6183.

[48]

Goncalves MFB, Cardoso SPD, Ferreira UMJ. Overcoming multidrug resistance: Flavonoid and terpenoid nitrogen-containing derivatives as abc transporter modulators. Molecules (basel, Switzerland), 2020, 25(15): 3364.

[49]

Görner C, Häuslein I, Schrepfer P, Eisenreich W, Brück T. Targeted engineering of cyclooctat-9-en-7-ol synthase: a stereospecific access to two new non-natural fusicoccane-type diterpenes. ChemCatChem, 2013, 5(11): 3289-3298.

[50]

Granger RE, Campbell EL, Johnston GA. (+)- And (-)-borneol: efficacious positive modulators of GABA action at human recombinant α1β2γ2L GABAA receptors. Biochem Pharmacol, 2005, 69(7): 1101-1111.

[51]

Guo K, Liu Y, Li SH (2021) The untapped potential of plant sesterterpenoids: chemistry, biological activities and biosynthesis. Nat Prod Rep. https://doi.org/10.1039/d1np00021g

[52]

Hammer SC, Syren P-O, Seitz M, Nestl BM, Hauer B. Squalene hopene cyclases: highly promiscuous and evolvable catalysts for stereoselective C-C and C-X bond formation. Curr Opin Chem Biol, 2013, 17(2): 293-300.

[53]

Hammer SC, Marjanovic A, Dominicus JM, Nestl BM, Hauer B. Squalene hopene cyclases are protonases for stereoselective Bronsted acid catalysis. Nat Chem Biol, 2015, 11(2): 121-126.

[54]

Hampel D, Mosandl A, Wust M. Biosynthesis of mono- and sesquiterpenes in carrot roots and leaves (Daucus carota L): metabolic cross talk of cytosolic mevalonate and plastidial methylerythritol phosphate pathways. Phytochemistry, 2005, 66(3): 305-311.

[55]

Harms V, Kirschning A, Dickschat JS. Nature-driven approaches to non-natural terpene analogues. Nat Prod Rep, 2020, 37(8): 1080-1097.

[56]

Harris GG, Lombardi PM, Pemberton TA, Matsui T, Weiss TM, Cole KE, Koksal M, Murphy FVT, Vedula LS, Chou WK, Cane DE, Christianson DW. Structural studies of geosmin synthase, a bifunctional sesquiterpene synthase with α domain architecture that catalyzes a unique cyclization-fragmentation reaction sequence. Biochemistry, 2015, 54(48): 7142-7155.

[57]

Helfrich EJN, Lin G-M, Voigt CA, Clardy J. Bacterial terpene biosynthesis: challenges and opportunities for pathway engineering. Beilstein J Org Chem, 2019, 15: 2889-2906.

[58]

Hezari M, Lewis NG, Croteau R. Purification and characterization of taxa-4(5),11(12)-diene synthase from pacific yew (taxus brevifolia) that catalyzes the first committed step of taxol biosynthesis. Arch Biochem Biophys, 1995, 322(2): 437-444.

[59]

Hou A, Dickschat JS. The biosynthetic gene cluster for sestermobaraenes—discovery of a geranylfarnesyl diphosphate synthase and a multiproduct sesterterpene synthase from Streptomyces mobaraensis. Angew Chem Int Ed, 2020, 59(45): 19961-19965.

[60]

Huang AC, Kautsar SA, Hong YJ, Medema MH, Bond AD, Tantillo DJ, Osbourn A. Unearthing a sesterterpene biosynthetic repertoire in the Brassicaceae through genome mining reveals convergent evolution. Proc Natl Acad Sci U S A, 2017, 114(29): E6005-E6014.

[61]

Huang AC, Hong YJ, Bond AD, Tantillo DJ, Osbourn A. Diverged plant terpene synthases reroute the carbocation cyclization path towards the formation of unprecedented 6/11/5 and 6/6/7/5 sesterterpene scaffolds. Angew Chem Int Ed Engl, 2018, 57(5): 1291-1295.

[62]

Hyatt DC, Youn B, Zhao Y, Santhamma B, Coates RM, Croteau RB, Kang CH. Structure of limonene synthase, a simple model for terpenoid cyclase catalysis. Proc Natl Acad Sci USA, 2007, 104(13): 5360-5365.

[63]

Ideno N, Umeyama S, Watanabe T, Nakajima M, Sato T, Hoshino T. Alicyclobacillus acidocaldarius squalene-hopene cyclase: the critical role of steric bulk at Ala306 and the first enzymatic synthesis of epoxydammarane from 2,3-oxidosqualene. ChemBioChem, 2018, 19(17): 1873-1886.

[64]

Janke R, Gorner C, Hirte M, Bruck T, Loll B. The first structure of a bacterial diterpene cyclase: CotB2. Acta Crystallogr D Biol Crystallogr, 2014, 70(Pt 6): 1528-1537.

[65]

Jennewein S, Long RM, Williams RM, Croteau R. Cytochrome P450 taxadiene 5α-hydroxylase, a mechanistically unusual monooxygenase catalyzing the first oxygenation step of taxol biosynthesis. Chem Biol, 2004, 11(3): 379-387.

[66]

Kampranis SC, Ioannidis D, Purvis A, Mahrez W, Ninga E, Katerelos NA, Anssour S, Dunwell JM, Degenhardt J, Makris AM, Goodenough PW, Johnson CB. Rational conversion of substrate and product specificity in a Salvia monoterpene synthase: structural insights into the evolution of terpene synthase function. Plant Cell, 2007, 19(6): 1994-2005.

[67]

Karuppiah V, Ranaghan KE, Leferink NGH, Johannissen LO, Shanmugam M, Ni Cheallaigh A, Bennett NJ, Kearsey LJ, Takano E, Gardiner JM, van der Kamp MW, Hay S, Mulholland AJ, Leys D, Scrutton NS. Structural basis of catalysis in the bacterial monoterpene synthases linalool synthase and 1,8-cineole synthase. ACS Catal, 2017, 7(9): 6268-6282.

[68]

Kawaide H, Imai R, Sassa T, Kamiya Y. Ent-kaurene synthase from the fungus Phaeosphaeria sp. L487. cDNA isolation, characterization, and bacterial expression of a bifunctional diterpene cyclase in fungal gibberellin biosynthesis. J Biol Chem, 1997, 272(35): 21706-21712.

[69]

Keeling CI, Bohlmann J. Diterpene resin acids in conifers. Phytochemistry, 2006, 67(22): 2415-2423.

[70]

Keeling CI, Weisshaar S, Lin RPC, Bohlmann J. Functional plasticity of paralogous diterpene synthases involved in conifer defense. Proc Natl Acad Sci U S A, 2008, 105(3): 1085-1090.

[71]

Kim S, Jung E, Kim JH, Park YH, Lee J, Park D. Inhibitory effects of (-)-α-bisabolol on LPS-induced inflammatory response in RAW264.7 macrophages. Food Chem Toxicol, 2011, 49(10): 2580-2585.

[72]

Koeksal M, Hu H, Coates RM, Peters RJ, Christianson DW. Structure and mechanism of the diterpene cyclase ent-copalyl diphosphate synthase. Nat Chem Biol, 2011, 7(7): 431-433.

[73]

Koksal M, Jin YH, Coates RM, Croteau R, Christianson DW. Taxadiene synthase structure and evolution of modular architecture in terpene biosynthesis. Nature, 2011, 469(7328): 116-120.

[74]

Koksal M, Potter K, Peters RJ, Christianson DW. 1.55Å-resolution structure of ent-copalyl diphosphate synthase and exploration of general acid function by site-directed mutagenesis. Biochim Biophys Acta, 2014, 1840(1): 184-190.

[75]

Koo HJ, Vickery CR, Xu Y, Louie GV, O'Maille PE, Bowman M, Nartey CM, Burkart MD, Noel JP. Biosynthetic potential of sesquiterpene synthases: product profiles of Egyptian Henbane premnaspirodiene synthase and related mutants. J Antibiot (tokyo), 2016, 69(7): 524-533.

[76]

Kuhnel LC, Nestl BM, Hauer B. Enzymatic addition of alcohols to terpenes by squalene hopene cyclase variants. ChemBioChem, 2017, 18(22): 2222-2225.

[77]

Kumar RP, Morehouse BR, Matos JO, Malik K, Lin H, Krauss IJ, Oprian DD. Structural characterization of early michaelis complexes in the reaction catalyzed by (+)-limonene synthase from Citrus sinensis using fluorinated substrate analogues. Biochemistry, 2017, 56(12): 1716-1725.

[78]

Lange BM, Ahkami A. Metabolic engineering of plant monoterpenes, sesquiterpenes and diterpenes-current status and future opportunities. Plant Biotechnol J, 2013, 11(2): 169-196.

[79]

Li K, Gustafson KR. Sesterterpenoids: chemistry, biology, and biosynthesis. Nat Prod Rep, 2020, 38(7): 1251-1281.

[80]

Li JX, Fang X, Zhao Q, Ruan JX, Yang CQ, Wang LJ, Miller DJ, Faraldos JA, Allemann RK, Chen XY, Zhang P. Rational engineering of plasticity residues of sesquiterpene synthases from Artemisia annua: product specificity and catalytic efficiency. Biochem J, 2013, 451(3): 417-426.

[81]

Li R, Chou WK, Himmelberger JA, Litwin KM, Harris GG, Cane DE, Christianson DW. Reprogramming the chemodiversity of terpenoid cyclization by remolding the active site contour of epi-isozizaene synthase. Biochemistry, 2014, 53(7): 1155-1168.

[82]

Li R, Tee CS, Jiang YL, Jiang XY, Venkatesh PN, Sarojam R, Ye J. A terpenoid phytoalexin plays a role in basal defense of Nicotiana benthamiana against Potato virus X. Sci Rep, 2015, 5: 9682.

[83]

Li Y, Lai Y, Wang Y, Liu N, Zhang F, Xu P. 1, 8-Cineol protect against influenza-virus-induced pneumonia in mice. Inflammation, 2016, 39(4): 1582-1593.

[84]

Li Z, Jiang Y, Zhang X, Chang Y, Li S, Zhang X, Zheng S, Geng C, Men P, Ma L, Yang Y, Gao Z, Tang Y-J, Li S. Fragrant venezuelaenes A and B with A 5–5–6–7 tetracyclic skeleton: discovery, biosynthesis, and mechanisms of central catalysts. ACS Catal, 2020, 10(10): 5846-5851.

[85]

Lin X, Hezari M. Mechanism of taxadiene synthase, a diterpene cyclase that catalyzes the first step of taxol. Biochemistry, 1996, 9: 2968-2977.

[86]

Liu Y, Wang L, Jung JH, Zhang S. Sesterterpenoids. Nat Prod Rep, 2007, 24(6): 1401-1429.

[87]

Liu WC, Gong T, Zhu P. Advances in exploring alternative taxol sources. RSC Adv, 2016, 6(54): 48800-48809.

[88]

Matsuda Y, Mitsuhashi T, Quan Z, Abe I. Molecular basis for stellatic acid biosynthesis: a genome mining approach for discovery of sesterterpene synthases. Org Lett, 2015, 17(18): 4644-4647.

[89]

Matsuda Y, Mitsuhashi T, Lee S, Hoshino M, Mori T, Okada M, Zhang H, Hayashi F, Fujita M, Abe I. Astellifadiene: structure determination by NMR spectroscopy and crystalline sponge method, and elucidation of its biosynthesis. Angew Chem Int Ed Engl, 2016, 55(19): 5785-5788.

[90]

McAndrew RP, Peralta-Yahya PP, DeGiovanni A, Pereira JH, Hadi MZ, Keasling JD, Adams PD. Structure of a three-domain sesquiterpene synthase: a prospective target for advanced biofuels production. Structure, 2011, 19(12): 1876-1884.

[91]

Meguro A, Motoyoshi Y, Teramoto K, Ueda S, Totsuka Y, Ando Y, Tomita T, Kim SY, Kimura T, Igarashi M, Sawa R, Shinada T, Nishiyama M, Kuzuyama T. An unusual terpene cyclization mechanism involving a carbon-carbon bond rearrangement. Angew Chem Int Ed Engl, 2015, 54(14): 4353-4356.

[92]

Miele M, Mumot AM, Zappa A, Romano P, Ottaggio L. Hazel and other sources of paclitaxel and related compounds. Phytochem Rev, 2012, 11(2–3): 211-225.

[93]

Misra RC, Maiti P, Chanotiya CS, Shanker K, Ghosh S. Methyl jasmonate-elicited transcriptional responses and pentacyclic triterpene biosynthesis in sweet basil. Plant Physiol, 2014, 164(2): 1028-1044.

[94]

Mitsuhashi T, Rinkel J, Okada M, Abe I, Dickschat JS. Mechanistic characterization of two chimeric sesterterpene synthases from penicillium. Chem Eur J, 2017, 23(42): 10053-10057.

[95]

Morehouse BR, Kumar RP, Matos JO, Olsen SN, Entova S, Oprian DD. Functional and structural characterization of a (+)-limonene synthase from Citrus sinensis. Biochemistry, 2017, 56(12): 1706-1715.

[96]

Morehouse BR, Kumar RP, Matos JO, Yu Q, Bannister A, Malik K, Temme JS, Krauss IJ, Oprian DD. Direct evidence of an enzyme-generated LPP intermediate in (+)-limonene synthase using a fluorinated GPP substrate analog. ACS Chem Biol, 2019, 14(9): 2035-2043.

[97]

Muangphrom P, Seki H, Suzuki M, Komori A, Nishiwaki M, Mikawa R, Fukushima EO, Muranaka T. Functional analysis of amorpha-4,11-diene synthase (ADS) homologs from non-artemisinin-producing artemisia species: The discovery of novel koidzumiol and (+)-α-bisabolol synthases. Plant Cell Physiol, 2016, 57(8): 1678-1688.

[98]

Muangphrom P, Misaki M, Suzuki M, Shimomura M, Suzuki H, Seki H, Muranaka T. Identification and characterization of (+)-α-bisabolol and 7-epi-silphiperfol-5-ene synthases from Artemisia abrotanum. Phytochemistry, 2019, 164: 144-153.

[99]

Muller J, Greiner JF, Zeuner M, Brotzmann V, Schafermann J, Wieters F, Widera D, Sudhoff H, Kaltschmidt B, Kaltschmidt C. 1,8-Cineole potentiates IRF3-mediated antiviral response in human stem cells and in an ex vivo model of rhinosinusitis. Clin Sci (lond), 2016, 130(15): 1339-1352.

[100]

Murata Y, Kokuryo T, Yokoyama Y, Yamaguchi J, Miwa T, Shibuya M, Yamamoto Y, Nagino M. The anticancer effects of novel α-bisabolol derivatives against pancreatic cancer. Anticancer Res, 2017, 37(2): 589-598.

[101]

Nakano C, Kudo F, Eguchi T, Ohnishi Y. Genome mining reveals two novel bacterial sesquiterpene cyclases: (-)-germacradien-4-ol and (-)-epi-α-bisabolol synthases from Streptomyces citricolor. ChemBioChem, 2011, 12(15): 2271-2275.

[102]

Nakano C, Watanabe T, Minamino M, Hoshino T. Enzymatic syntheses of novel carbocyclic scaffolds with a 6,5 + 5,5 ring system by squalene-hopene cyclase. Org Biomol Chem, 2019, 17(42): 9375-9389.

[103]

O'Brien TE, Bertolani SJ, Tantillo DJ, Siegel JB. Mechanistically informed predictions of binding modes for carbocation intermediates of a sesquiterpene synthase reaction. Chem Sci, 2016, 7(7): 4009-4015.

[104]

O'Brien TE, Bertolani SJ, Zhang Y, Siegel JB, Tantillo DJ. Predicting productive binding modes for substrates and carbocation intermediates in terpene synthases-bornyl diphosphate synthase as a representative case. ACS Catal, 2018, 8(4): 3322-3330.

[105]

Oikawa H, Toyomasu T, Toshima H, Ohashi S, Kawaide H, Kamiya Y, Ohtsuka M, Shinoda S, Mitsuhashi W, Sassa T. Cloning and functional expression of cDNA encoding Aphidicolan-16 beta-ol synthase: a key enzyme responsible for formation of an unusual diterpene skeleton in biosynthesis of aphidicolin. J Am Chem Soc, 2001, 123(21): 5154-5155.

[106]

Okada M, Matsuda Y, Mitsuhashi T, Hoshino S, Mori T, Nakagawa K, Quan Z, Qin B, Zhang H, Hayashi F, Kawaide H, Abe I. Genome-based discovery of an unprecedented cyclization mode in fungal sesterterpenoid biosynthesis. J Am Chem Soc, 2016, 138(31): 10011-10018.

[107]

O'Maille PE, Malone A, Dellas N, Andes Hess B, Smentek L Jr, Sheehan I, Greenhagen BT, Chappell J, Manning G, Noel JP. Quantitative exploration of the catalytic landscape separating divergent plant sesquiterpene synthases. Nat Chem Biol, 2008, 4(10): 617-662.

[108]

Pemberton TA, Chen MB, Harris GG, Chou WKW, Duan L, Koksal M, Genshaft AS, Cane DE, Christianson DW. Exploring the influence of domain architecture on the catalytic function of diterpene synthases. Biochemistry, 2017, 56(14): 2010-2023.

[109]

Peralta-Yahya PP, Ouellet M, Chan R, Mukhopadhyay A, Keasling JD, Lee TS. Identification and microbial production of a terpene-based advanced biofuel. Nat Commun, 2011, 2(1): 1-8.

[110]

Peters RJ. Two rings in them all: the labdane-related diterpenoids. Nat Prod Rep, 2010, 27(11): 1521-1530.

[111]

Peters RJ, Croteau RB. Abietadiene synthase catalysis: conserved residues involved in protonation-initiated cyclization of geranylgeranyl diphosphate to (+)-copalyl diphosphate. Biochemistry, 2002, 41(6): 1836-1842.

[112]

Peters RJ, Ravn MM, Coates RM, Croteau RB. Bifunctional abietadiene synthase: free diffusive transfer of the (+)-copalyl diphosphate intermediate between two distinct active sites. J Am Chem Soc, 2001, 123(37): 8974-8978.

[113]

Potter K, Criswell J, Zi J, Stubbs A, Peters RJ. Novel product chemistry from mechanistic analysis of ent-copalyl diphosphate synthases from plant hormone biosynthesis. Angew Chem Int Ed Engl, 2014, 53(28): 7198-7202.

[114]

Potter KC, Zi J, Hong YJ, Schulte S, Malchow B, Tantillo DJ, Peters RJ. Blocking deprotonation with retention of aromaticity in a plant ent-copalyl diphosphate synthase leads to product rearrangement. Angew Chem Int Ed Engl, 2016, 55(2): 634-638.

[115]

Qin B, Matsuda Y, Mori T, Okada M, Quan Z, Mitsuhashi T, Wakimoto T, Abe I. An unusual chimeric diterpene synthase from Emericella variecolor and its functional conversion into a sesterterpene synthase by domain swapping. Angew Chem Int Ed Engl, 2016, 55(5): 1658-1661.

[116]

Ravn MM, Coates RM, Flory JE, Peters RJ, Croteau R. Stereochemistry of the cyclization-rearrangement of (+)-copalyl diphosphate to (-)-abietadiene catalyzed by recombinant abietadiene synthase from Abies grandis. Org Lett, 2000, 2(5): 573-576.

[117]

Raz K, Driller R, Dimos N, Ringel M, Bruck T, Loll B, Major DT. The impression of a nonexisting catalytic effect: the role of CotB2 in guiding the complex biosynthesis of cyclooctat-9-en-7-ol. J Am Chem Soc, 2020, 142(51): 21562-21574.

[118]

Rising KA, Starks CM, Noel JP, Chappell J. Demonstration of germacrene A as an intermediate in 5-epi-aristolochene synthase catalysis. J Am Chem Soc, 2000, 122(9): 1861-1866.

[119]

Rising KA, Crenshaw CM, Koo HJ, Subramanian T, Chehade KAH, Starks C, Allen KD, Andres DA, Spielmann HP, Noel JP, Chappell J. Formation of a novel macrocyclic alkaloid from the unnatural farnesyl diphosphate analogue anilinogeranyl diphosphate by 5-epi-aristolochene synthase. ACS Chem Biol, 2015, 10(7): 1729-1736.

[120]

Rudolf JD, Dong LB, Cao H, Hatzos-Skintges C, Osipiuk J, Endres M, Chang CY, Ma M, Babnigg G, Joachimiak A, Phillips GN Jr, Shen B. Structure of the ent-copalyl diphosphate synthase PtmT2 from Streptomyces platensis CB00739, a bacterial type II diterpene synthase. J Am Chem Soc, 2016, 138(34): 10905-10915.

[121]

Rudolph K, Parthier C, Egerer-Sieber C, Geiger D, Muller YA, Kreis W, Muller-Uri F. Expression, crystallization and structure elucidation of γ-terpinene synthase from Thymus vulgaris. Acta Crystallogr F Struct Biol Commun, 2016, 72(1): 16-23.

[122]

Ruzicka L. The isoprene rule and the biogenesis of terpenic compounds. Experientia, 1953, 9(10): 357-367.

[123]

Saenz JP, Grosser D, Bradley AS, Lagny TJ, Lavrynenko O, Broda M, Simons K. Hopanoids as functional analogues of cholesterol in bacterial membranes. Proc Natl Acad Sci U S A, 2015, 112(38): 11971-11976.

[124]

Schalk M, Pastore L, Mirata MA, Khim S, Schouwey M, Deguerry F, Pineda V, Rocci L, Daviet L. Toward a biosynthetic route to sclareol and amber odorants. J Am Chem Soc, 2012, 134(46): 18900-18903.

[125]

Schrepfer P, Buettner A, Goerner C, Hertel M, van Rijn J, Wallrapp F, Eisenreich W, Sieber V, Kourist R, Bruck T. Identification of amino acid networks governing catalysis in the closed complex of class I terpene synthases. Proc Natl Acad Sci USA, 2016, 113(8): E958-967.

[126]

Seki T, Kokuryo T, Yokoyama Y, Suzuki H, Itatsu K, Nakagawa A, Mizutani T, Miyake T, Uno M, Yamauchi K, Nagino M. Antitumor effects of α-bisabolol against pancreatic cancer. Cancer Sci, 2011, 102(12): 2199-2205.

[127]

Seol GH, Kim KY. Eucalyptol and its role in chronic diseases. Adv Exp Med Biol, 2016, 929: 389-398.

[128]

Shao J, Chen QW, Lv HJ, He J, Liu ZF, Lu YN, Liu HL, Wang GD, Wang Y. (+)-thalianatriene and (-)-retigeranin B catalyzed by Sesterterpene synthases from Arabidopsis thaliana. Org Lett, 2017, 19(7): 1816-1819.

[129]

Shibuya M, Katsube Y, Otsuka M, Zhang H, Tansakul P, Xiang T, Ebizuka Y. Identification of a product specific β-amyrin synthase from Arabidopsis thaliana. Plant Physiol Biochem, 2009, 47(1): 26-30.

[130]

Shishova EY, Costanzo LD, Cane DE, Christianson DW. X-ray crystal structure of aristolochene synthase from Aspergillus terreus and evolution of templates for the cyclization of farnesyl diphosphate. Biochemistry, 2006, 46(7): 1941-1951.

[131]

Siedenburg G, Jendrossek D. Squalene-hopene cyclases. Appl Environ Microbiol, 2011, 77(12): 3905-3915.

[132]

Siedenburg G, Breuer M, Jendrossek D. Prokaryotic squalene-hopene cyclases can be converted to citronellal cyclases by single amino acid exchange. Appl Microbiol Biotechnol, 2013, 97(4): 1571-1580.

[133]

Silva EAP, Carvalho JS, Guimaraes AG, Barreto RSS, Santos MRV, Barreto AS, Quintans-Junior LJ. The use of terpenes and derivatives as a new perspective for cardiovascular disease treatment: a patent review (2008–2018). Expert Opin Ther Pat, 2019, 29(1): 43-53.

[134]

Singh B, Sharma RA. Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech, 2015, 5(2): 129-151.

[135]

Srividya N, Davis EM, Croteau RB, Lange BM. Functional analysis of (4S)-limonene synthase mutants reveals determinants of catalytic outcome in a model monoterpene synthase. Proc Natl Acad Sci U S A, 2015, 112(11): 3332-3337.

[136]

Starks CM, Back K, Chappell J, Noel JP. Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science, 1997, 277(5333): 1815-1820.

[137]

Szymczyk P, Szymanska G, Lipert A, Weremczuk-Jezyna I, Kochan E. Computer-aided saturation mutagenesis of Arabidopsis thaliana ent-copalyl diphosphate synthase. Interdiscip Sci, 2020, 12(1): 32-43.

[138]

Tang X, Zhang F, Zeng T, Li W, Yin S, Wu R. Enzymatic plasticity inspired by the diterpene cyclase CotB2. ACS Chem Biol, 2020, 15(10): 2820-2832.

[139]

Tomita T, Kim SY, Teramoto K, Meguro A, Ozaki T, Yoshida A, Motoyoshi Y, Mori N, Ishigami K, Watanabe H, Nishiyama M, Kuzuyama T. Structural insights into the CotB2-catalyzed cyclization of geranylgeranyl diphosphate to the diterpene cyclooctat-9-en-7-ol. ACS Chem Biol, 2017, 12(6): 1621-1628.

[140]

Toyomasu T, Kawaide H, Ishizaki A, Shinoda S, Otsuka M, Mitsuhashi W, Sassa T. Cloning of a full-length cDNA encoding ent-kaurene synthase from Gibberella fujikuroi: functional analysis of a bifunctional diterpene cyclase. Biosci Biotechnol Biochem, 2000, 64(3): 660-664.

[141]

Toyomasu T, Nuda R, Kenmoku H, Kanno Y, Miura S, Nakano C, Shiono Y, Mitsuhashi W, Toshima H, Oikawa H, Hoshino T, Dairi T, Kato N, Sassa T. Identification of diterpene biosynthetic gene clusters and functional analysis of labdane-related diterpene cyclases in Phomopsis amygdali. Biosci Biotechnol Biochem, 2008, 72(4): 1038-1047.

[142]

Valdes M, Calzada F, Mendieta-Wejebe JE, Merlin-Lucas V, Velazquez C, Barbosa E. Antihyperglycemic effects of Annona diversifolia Safford and its acyclic terpenoids: α-glucosidase and selective SGLT1 inhibitiors. Molecules (basel, Switzerland), 2020, 25(15): 3361.

[143]

Van der Kamp MW, Sirirak J, Zurek J, Allemann RK, Mulholland AJ. Conformational change and ligand binding in the aristolochene synthase catalytic cycle. Biochemistry, 2013, 52(45): 8094-8105.

[144]

Van Rijn JPM, Escorcia AM, Thiel W. QM/MM study of the taxadiene synthase mechanism. J Comput Chem, 2019, 40(21): 1902-1910.

[145]

Wang L, Yang B, Lin XP, Zhou XF, Liu Y. Sesterterpenoids. Nat Prod Rep, 2013, 30(3): 455-473.

[146]

Welander PV, Hunter RC, Zhang L, Sessions AL, Summons RE, Newman DK. Hopanoids play a role in membrane integrity and pH homeostasis in Rhodopseudomonas palustris TIE-1. J Bacteriol, 2009, 191(19): 6145-6156.

[147]

Wendt KU, Schulz GE. Isoprenoid biosynthesis: manifold chemistry catalyzed by similar enzymes. Structure (london), 1998, 6(2): 127-133.

[148]

Wendt KU, Poralla K, Schulz GE. Structure and function of a squalene cyclase. Science (wash D c), 1997, 277(5333): 1811-1815.

[149]

Wendt KU, Lenhart A, Schulz GE. The structure of the membrane protein squalene-hopene cyclase at 2.0 angstrom resolution. J Mol Biol, 1999, 286(1): 175-187.

[150]

Whittington DA, Wise ML, Urbansky M, Coates RM, Croteau RB, Christianson DW. Bornyl diphosphate synthase: structure and strategy for carbocation manipulation by a terpenoid cyclase. Proc Natl Acad Sci USA, 2002, 99(24): 15375-15380.

[151]

Wilderman PR, Peters RJ. A single residue switch converts abietadiene synthase into a pimaradiene specific cyclase. J Am Chem Soc, 2007, 129(51): 15736-15737.

[152]

Williams DC, Wildung MR, Jin AQ, Dalal D, Oliver JS, Coates RM, Croteau R. Heterologous expression and characterization of a "Pseudomature" form of taxadiene synthase involved in paclitaxel (Taxol) biosynthesis and evaluation of a potential intermediate and inhibitors of the multistep diterpene cyclization reaction. Arch Biochem Biophys, 2000, 379(1): 137-146.

[153]

Withers ST, Gottlieb SS, Lieu B, Newman JD, Keasling JD. Identification of isopentenol biosynthetic genes from Bacillus subtilis by a screening method based on isoprenoid precursor toxicity. Appl Environ Microbiol, 2007, 73(19): 6277-6283.

[154]

Xu Y, Zhang Z, Wang M, Wei J, Chen H, Gao Z, Sui C, Luo H, Zhang X, Yang Y, Meng H, Li W. Identification of genes related to agarwood formation: transcriptome analysis of healthy and wounded tissues of Aquilaria sinensis. BMC Genom, 2013, 14: 1-16.

[155]

Xu J, Ai Y, Wang J, Xu J, Zhang Y, Yang D. Converting S-limonene synthase to pinene or phellandrene synthases reveals the plasticity of the active site. Phytochemistry, 2017, 137: 34-41.

[156]

Xu J, Xu J, Ai Y, Farid RA, Tong L, Yang D. Mutational analysis and dynamic simulation of S-limonene synthase reveal the importance of Y573: insight into the cyclization mechanism in monoterpene synthases. Arch Biochem Biophys, 2018, 638: 27-34.

[157]

Yang CH, Horwitz SB. Taxol®: The first microtubule stabilizing agent. Int J Mol Sci, 2017, 18(8): 1733-1743.

[158]

Yang Y-L, Zhang S, Ma K, Xu Y, Tao Q, Chen Y, Chen J, Guo S, Ren J, Wang W, Tao Y, Yin W-B, Liu H. Discovery and characterization of a new family of diterpene cyclases in bacteria and fungi. Angew Chem Int Ed, 2017, 56(17): 4749-4752.

[159]

Ye Y, Minami A, Mandi A, Liu C, Taniguchi T, Kuzuyama T, Monde K, Gomi K, Oikawa H. Genome mining for Sesterterpenes using bifunctional terpene synthases reveals a unified intermediate of di/sesterterpenes. J Am Chem Soc, 2015, 137(36): 11846-11853.

[160]

Ye W, He X, Wu H, Wang L, Zhang W, Fan Y, Li H, Liu T, Gao X. Identification and characterization of a novel sesquiterpene synthase from Aquilaria sinensis: an important gene for agarwood formation. Int J Biol Macromol, 2018, 108: 884-892.

[161]

Zhang F, Chen N, Wu R. Molecular dynamics simulations elucidate conformational dynamics responsible for the cyclization reaction in TEAS. J Chem Inf Model, 2016, 56(5): 877-885.

[162]

Zhang F, Chen N, Zhou J, Wu R. Protonation-dependent diphosphate cleavage in FPP cyclases and synthases. ACS Catal, 2016, 6(10): 6918-6929.

[163]

Zhang Z, Luo Z, Bi A, Yang W, An W, Dong X, Chen R, Yang S, Tang H, Han X, Luo L. Compound edaravone alleviates lipopolysaccharide (LPS)-induced acute lung injury in mice. Eur J Pharmacol, 2017, 811: 1-11.

[164]

Zhang F, Wang YH, Tang X, Wu R. Catalytic promiscuity of the non-native FPP substrate in the TEAS enzyme: non-negligible flexibility of the carbocation intermediate. Phys Chem Chem Phys, 2018, 20(22): 15061-15073.

[165]

Zhang F, An T, Tang X, Zi J, Luo H-B, Wu R. Enzyme promiscuity versus fidelity in two sesquiterpene cyclases (TEAS versus ATAS). ACS Catal, 2019, 10(2): 1470-1484.

[166]

Zhao B, Lin X, Lei L, Lamb DC, Kelly SL, Waterman MR, Cane DE. Biosynthesis of the sesquiterpene antibiotic albaflavenone in Streptomyces coelicolor A3(2). J Biol Chem, 2008, 283(13): 8183-8189.

[167]

Zhou K, Peters RJ. Investigating the conservation pattern of a putative second terpene synthase divalent metal binding motif in plants. Phytochemistry, 2009, 70(3): 366-369.

[168]

Zhou K, Gao Y, Hoy JA, Mann FM, Honzatko RB, Peters RJ. Insights into diterpene cyclization from structure of bifunctional abietadiene synthase from Abies grandis. J Biol Chem, 2012, 287(9): 6840-6850.

[169]

Zi JC, Mafu S, Peters RJ. To gibberellins and beyond! Surveying the evolution of (di)terpenoid metabolism. Annu Rev Plant Biol, 2014, 65: 259-286.

Funding

National Key Research and Development Program of China(2019YFA09005000)

the National Natural Science Foundation of China(21536004)

the Fundamental Research Funds for the Central Universities(22221818014)

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/