Bio-inspired silver selenide nano-chalcogens using aqueous extract of Melilotus officinalis with biological activities

Seyedeh Zahra Mirzaei , Hamed Esmaeil Lashgarian , Maryam Karkhane , Kiana Shahzamani , Alaa Kamil Alhameedawi , Abdolrazagh Marzban

Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 56

PDF
Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 56 DOI: 10.1186/s40643-021-00412-3
Research

Bio-inspired silver selenide nano-chalcogens using aqueous extract of Melilotus officinalis with biological activities

Author information +
History +
PDF

Abstract

For the first time, an aqueous extract of Melilotus officinalis was used to synthesize bimetallic silver selenide chalcogenide nanostructures (Ag2Se-NCs). The formation of NCs was confirmed and characterized by UV–visible and FTIR spectroscopy, SEM and TEM imaging, XRD and EDX crystallography, zeta potential (ZP) and size distribution (DLS). The bioactivities of biosynthesized Ag2Se-NCs, such as antibacterial, antibiofilm, antioxidant and cytotoxicity potentials, were then examined. Bio-based Ag2Se-NCs were successfully synthesized with mostly spherical shape in the size range of 20–40 nm. Additionally, the MIC and MBC values of Ag2Se-NCs against β-lactam-resistant Pseudomonas aeruginosa (ATCC 27853) were 3.12 and 50 µg/ml, respectively. The DPPH scavenging potential of Ag2Se-NCs in terms of IC50 was estimated to be 58.52. Green-synthesized Ag2Se-NCs have been shown to have promising benefits and could be used for biomedical applications. Although the findings indicate promising bioactivity of Ag2Se-NCs synthesized by M. officinalis extract (MO), more studies are required to clarify the comprehensive mechanistic biological activities.

Keywords

Silver selenide nano-chalcogens (Ag2Se-NCs) / Melilotus officinalis / Pseudomonas aeruginosa / Biological activities

Cite this article

Download citation ▾
Seyedeh Zahra Mirzaei, Hamed Esmaeil Lashgarian, Maryam Karkhane, Kiana Shahzamani, Alaa Kamil Alhameedawi, Abdolrazagh Marzban. Bio-inspired silver selenide nano-chalcogens using aqueous extract of Melilotus officinalis with biological activities. Bioresources and Bioprocessing, 2021, 8(1): 56 DOI:10.1186/s40643-021-00412-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdelghany AM, Ayaad DM, Mahmoud SM. Antibacterial and energy gap correlation of PVA/SA biofilms doped with selenium nanoparticles. Biointerface Res Appl Chem, 2020, 10(5): 6236-6244.

[2]

Alves MM, Andrade SM, Grenho L, Fernandes MH, Santos C, Montemor MF. Influence of apple phytochemicals in ZnO nanoparticles formation, photoluminescence and biocompatibility for biomedical applications. Mater Sci Eng C, 2019, 101: 76-87.

[3]

Anthony SP. Synthesis of Ag2S and Ag2Se nanoparticles in self assembled block copolymer micelles and nano-arrays fabrication. Mater Lett, 2009, 63(9–10): 773-776.

[4]

Ayele DW. A facile one-pot synthesis and characterization of Ag2Se nanoparticles at low temperature. Egypt J f Basic Appl Sci, 2016, 3(2): 149-154.

[5]

Chougale U, Han S-H, Rath M, Fulari V. Synthesis, characterization and surface deformation study of nanocrystalline Ag2Se thin films. Mater Phys Mech, 2013, 17(1): 47-58.

[6]

Delgado-Beleño Y, Martinez-Nuñez C, Cortez-Valadez M, Flores-López N, Flores-Acosta M. Optical properties of silver, silver sulfide and silver selenide nanoparticles and antibacterial applications. Mater Res Bull, 2018, 99: 385-392.

[7]

Dobrucka R. Biogenic synthesis of trimetallic nanoparticles Au/ZnO/Ag using Meliloti officinalis extract. Int J Environ Anal Chem, 2020, 100(9): 981-991.

[8]

Gabal RA, Shalaby RM, Abdelghany A, Kamal M. Antimicrobial effect, electronic and structural correlation of nano-filled tin bismuth metal alloys for biomedical applications. Biointerface Res Appl Chem, 2019, 9(5): 4340-4344.

[9]

García DA, Mendoza L, Vizuete K, Debut A, Arias MT, Gavilanes A, . Sugar-mediated green synthesis of silver selenide semiconductor nanocrystals under ultrasound irradiation. Molecules, 2020, 25(21): 5193.

[10]

Gholami M, Shahzamani K, Marzban A, Lashgarian HE. Evaluation of antimicrobial activity of synthesised silver nanoparticles using Thymus kotschyanus aqueous extract. IET Nanobiotechnol, 2018, 12(8): 1114-1117.

[11]

Gilavand F, Saki R, Mirzaei SZ, Lashgarian HE, Karkhane M, Marzban A. Green synthesis of zinc nanoparticles using aqueous extract of Magnoliae officinalis and assessment of its bioactivity potentials. Biointerface Res Appl Chem, 2021, 11(1): 7765-7774.

[12]

Gopinath V, Priyadarshini S, Priyadharsshini NM, Pandian K, Velusamy P. Biogenic synthesis of antibacterial silver chloride nanoparticles using leaf extracts of Cissus quadrangularis Linn. Mater Lett, 2013, 91: 224-227.

[13]

Hemanth Kumar NK, Andia JD, Manjunatha S, Murali M, Amruthesh KN, Jagannath S. Antimitotic and DNA-binding potential of biosynthesized ZnO-NPs from leaf extract of Justicia wynaadensis (Nees) Heyne—a medicinal herb. Biocatal Agric Biotechnol, 2019, 18: 101024.

[14]

Jafari M, Salavati-Niasari M, Sobhani A. Silver selenide nanoparticles: synthesis, characterisation and effect of preparation conditions under ultrasound radiation. Micro Nano Lett, 2013, 8(9): 508-511.

[15]

Jiang J, Pi J, Cai J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg Chem Appl, 2018

[16]

Kalishwaralal K, Jeyabharathi S, Sundar K, Muthukumaran A. A novel one-pot green synthesis of selenium nanoparticles and evaluation of its toxicity in zebrafish embryos. Artif Cells Nanomed Biotechnol, 2016, 44(2): 471-477.

[17]

Kanchi S, Inamuddin Khan A. Biogenic synthesis of selenium nanoparticles with edible mushroom extract: evaluation of cytotoxicity on prostate cancer cell lines and their antioxidant, and antibacterial activity. Biointerface Res Appl Chem, 2020, 10(6): 6629-6639.

[18]

Kanipandian N, Thirumurugan R. A feasible approach to phyto-mediated synthesis of silver nanoparticles using industrial crop Gossypium hirsutum (cotton) extract as stabilizing agent and assessment of its in vitro biomedical potential. Ind Crops Prod, 2014, 55: 1-10.

[19]

Kanipandian N, Kannan S, Ramesh R, Subramanian P, Thirumurugan R. Characterization, antioxidant and cytotoxicity evaluation of green synthesized silver nanoparticles using Cleistanthus collinus extract as surface modifier. Mater Res Bull, 2014, 49: 494-502.

[20]

Liu Y-T, Gong P-H, Xiao F-Q, Shao S, Zhao D-Q, Yan M-M, . Chemical constituents and antioxidant, anti-inflammatory and anti-tumor activities of Melilotus officinalis (linn.) pall. Molecules, 2018, 23(2): 271.

[21]

Loeschner K, Hadrup N, Qvortrup K, Larsen A, Gao X, Vogel U, . Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol, 2011, 8(1): 18.

[22]

Lu Y, Qiu Y, Cai K, Ding Y, Wang M, Jiang C, . Ultrahigh power factor and flexible silver selenide-based composite film for thermoelectric devices. Energy Environ Sci, 2020, 13(4): 1240-1249.

[23]

Marslin G, Siram K, Maqbool Q, Selvakesavan RK, Kruszka D, Kachlicki P, . Secondary metabolites in the green synthesis of metallic nanoparticles. Mater Res Bull, 2018, 11(6): 940.

[24]

Martinez-Nuñez C, Cortez-Valadez M, Delgado-Beleño Y, Hurtado RB, Alvarez RA, Rocha-Rocha O, . Radial breathing modes in silver selenide quantum dots. Mater Lett, 2016, 167: 135-140.

[25]

Martinez-Nuñez C, Cortez-Valadez M, Delgado-Beleño Y, Flores-López N, Román-Zamorano J, Flores-Valenzuela J, . In situ surface-enhanced Raman spectroscopy effect in zeolite due to Ag2Se quantum dots. J Nanopart Res, 2017, 19(2): 31.

[26]

Mirzaei SZ, Ahmadi Somaghian S, Lashgarian HE, Karkhane M, Cheraghipour K, Marzban A. Phyco-fabrication of bimetallic nanoparticles (zinc–selenium) using aqueous extract of Gracilaria corticata and its biological activity potentials. Ceram Int, 2020, 48(4): 5580-5586.

[27]

Mladenović K, Muruzović M, Stefanović O, Vasić S, Čomić R. Antimicrobial, antioxidant and antibiofilm activity of extracts of Melilotus officinalis (L.) Pall. J Anim Plant Sci, 2016, 26(5): 1436-1444.

[28]

Qayyum S, Khan AU. Nanoparticles vs. biofilms: a battle against another paradigm of antibiotic resistance. MedChemComm, 2016, 7(8): 1479-1498.

[29]

Reyes-Torres MA, Mendoza-Mendoza E, Miranda-Hernández ÁM, Pérez-Díaz MA, López-Carrizales M, Peralta-Rodríguez RD, . Synthesis of CuO and ZnO nanoparticles by a novel green route: antimicrobial activity, cytotoxic effects and their synergism with ampicillin. Ceram Int, 2019, 45(18, Part A): 24461-24468.

[30]

Shah S, Gaikwad S, Nagar S, Kulshrestha S, Vaidya V, Nawani N, . Biofilm inhibition and anti-quorum sensing activity of phytosynthesized silver nanoparticles against the nosocomial pathogen Pseudomonas aeruginosa. Biofouling, 2019, 35(1): 34-49.

[31]

Shaikh S, Nazam N, Rizvi SMD, Ahmad K, Baig MH, Lee EJ, . Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. Int J Mol Sci, 2019, 20(10): 2468.

[32]

Sibiya P, Moloto M. Starch-capped silver selenide nanoparticles: effect of capping agent concentration and extraction time on size. Asian J Chem, 2016, 28(6): 1315.

[33]

Sibiya NP, Moloto MJ. Shape control of silver selenide nanoparticles using green capping molecules. Green Process Synth, 2017, 6(2): 183-188.

[34]

Sidorova D, Lipasova V, Nadtochenko V, Baranchikov A, Astafiev A, Svergunenko S, . Synthesis of silver nanoparticles with the use of herbaceous plant extracts and effect of nanoparticles on bacteria. Appl Biochem Microbiol, 2018, 54(8): 816-823.

[35]

Subhanandaraj T, Raghavan K, Narayanan RAN. Antibacterial and antibiofilm activity of probiotic based silver nanoparticles is a green approach in biomedical applications. Lett Appl NanoBioSci, 2020, 9(2): 988-994.

[36]

Sytu MRC, Camacho DH. Green synthesis of silver nanoparticles (AgNPs) from Lenzites betulina and the potential synergistic effect of AgNP and capping biomolecules in enhancing antioxidant activity. BioNanoScience, 2018, 8(3): 835-844.

[37]

Tripathy A, Behera M, Rout AS, Biswal SK, Phule AD. Optical, structural, and antimicrobial study of gold nanoparticles synthesized using an aqueous extract of mimusops elengi raw fruits. Biointerface Res Appl Chem, 2020, 10(6): 7085-7096.

[38]

Vo DQ, Dung DD, Cho S, Kim S. A simple synthesis of Ag 2+ x Se nanoparticles and their thin films for electronic device applications. Korean J Chem Eng, 2016, 33(1): 305-311.

[39]

Vorobyev S, Likhatski M, Romanchenko A, Maksimov N, Zharkov S, Krylov A, . Colloidal and deposited products of the interaction of tetrachloroauric acid with hydrogen selenide and hydrogen sulfide in aqueous solutions. Minerals, 2018, 8(11): 492.

[40]

Yang Y, Pan D, Zhang Z, Chen T, Xie H, Gao J, . Ag2Se quantum dots for photovoltaic applications and ligand effects on device performance. J Alloys Compounds, 2018, 766: 925-932.

Funding

Lorestan University of Medical Sciences

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/