The ancient koji mold (Aspergillus oryzae) as a modern biotechnological tool

Ghoson M. Daba , Faten A. Mostafa , Waill A. Elkhateeb

Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 52

PDF
Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 52 DOI: 10.1186/s40643-021-00408-z
Review

The ancient koji mold (Aspergillus oryzae) as a modern biotechnological tool

Author information +
History +
PDF

Abstract

Aspergillus oryzae (A. oryzae) is a filamentous micro-fungus that is used from centuries in fermentation of different foods in many countries all over the world. This valuable fungus is also a rich source of many bioactive secondary metabolites. Moreover, A. oryzae has a prestigious secretory system that allows it to secrete high concentrations of proteins into its culturing medium, which support its use as biotechnological tool in veterinary, food, pharmaceutical, and industrial fields. This review aims to highlight the significance of this valuable fungus in food industry, showing its generosity in production of nutritional and bioactive metabolites that enrich food fermented by it. Also, using A. oryzae as a biotechnological tool in the field of enzymes production was described. Furthermore, domestication, functional genomics, and contributions of A. oryzae in functional production of human pharmaceutical proteins were presented. Finally, future prospects in order to get more benefits from A. oryzae were discussed.

Keywords

Aspergillus oryzae / Food industry / Enzymes / Secondary metabolites / Functional genomics

Cite this article

Download citation ▾
Ghoson M. Daba, Faten A. Mostafa, Waill A. Elkhateeb. The ancient koji mold (Aspergillus oryzae) as a modern biotechnological tool. Bioresources and Bioprocessing, 2021, 8(1): 52 DOI:10.1186/s40643-021-00408-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahmed A, Badar R, Khalique N. Screening and optimization of submerged fermentation of lipolytic Aspergillus oryzae. BioResources, 2019, 14(4): 7664-7674.

[2]

Arnaud MB, Chibucos MC, Costanzo MC, Crabtree J, Inglis DO, Lotia A, Orvis J, Shah P, Skrzypek MS, Binkley G, Miyasato SR, Wortman JR, Sherlock G. The Aspergillus Genome Database, a curated comparative genomics resource for gene, protein and sequence information for the Aspergillus research community. Nucleic Acids Res, 2010, 38: D420-427.

[3]

Barbesgaard P, Heldt-Hansen HP, Diderichsen B. On the safety of Aspergillus oryzae: a review. Appl Microbiol Biotechnol, 1992, 36: 569-572.

[4]

Bhat MK. Cellulases and related enzymes in biotechnology. Biotechnology Advance, 2000, 18: 355-383.

[5]

Biesebeke R, Record E, van Biezen N, Heerikhuisen M, Franken A, Punt PJ, van den Hondel CA. Branching mutants of Aspergillus oryzae with improved amylase and protease production on solid substrates. Appl Microbiol Biotechnol, 2005, 69: 44-50.

[6]

Blumenthal CZ. Production of toxic metabolites in Aspergillus niger, Aspergillusoryzae, and Trichodermareesei: Justification of mycotoxin testing in food grade enzyme preparations derived from the three fungi. Regul Toxicol Pharmacol, 2004, 39: 214-228.

[7]

Bocking SP, Wiebe MG, Robson GD, Hansen K, Christiansen LH, Trinci AP. Effect of branch frequency in Aspergillus oryzae on protein secretion and culture viscosity. Biotechnol Bioeng, 1999, 65(6): 638-648.

[8]

Brown I, Dafforn T, Fryer P, Cox P. Kinetic study of the thermal denaturation of a hyper thermostable extracellular α-amylase from Pyrococcus furiosus. Biochim Biophys Acta, 2013, 1834(12): 2600-2605.

[9]

Burnett CL, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Andersen FA. Final report of the safety assessment of kojic acid as used in cosmetics. Int J Toxicol, 2010, 29(6 suppl): 244S-273S.

[10]

Chancharoonpong C, Hsieh PC, Sheu SC. Enzyme production and growth of Aspergillus oryzae S. on soybean koji fermentation. APCBEE Proc, 2012, 2: 57-61.

[11]

Chang PK. Genome-wide nucleotide variation distinguishes Aspergillusflavus from Aspergillusoryzae and helps to reveal origins of atoxigenic A.flavus biocontrol strains. J Appl Microbiol, 2019, 127(5): 1511-1520.

[12]

Chang PK, Ehrlich KC. What does genetic diversity of Aspergillus flavus tell us about Aspergillusoryzae?. Int J Food Microbiol, 2010, 138: 189-199.

[13]

Chang PK, Ehrlich KC, Hua S-S. Cladal relatedness among Aspergillus oryzae isolates and Aspergillus flavus S and L morphotype isolates. Int J Food Microbiol, 2006, 108: 172-177.

[14]

Chang, P. K., Horn, B. W., Abe, K., Gomi, K. 2014. Aspergillus: introduction. In Encyclopedia of Food Microbiology, 2nd Edition. Elsevier Inc; 77–82. https://doi.org/10.1016/B978-0-12-384730-0.00010-0

[15]

Chankhamjon P, Boettgerschmidt D, Scherlach K, Urbansky B, Lackner G, Kalb D, Dahse HM, Hoffmeister D, Hertweck C. Biosynthesis of the halogenated mycotoxin aspirochlorine in koji mold involves a cryptic amino acid conversion. Angew Chem, 2015, 53: 13409-13413.

[16]

Chen Y, Wan J, Zhang X, Ma Y, Wang Y. Effect of heating on recycled properties of unbleached eucalyptus cellulose fiber. Carbohyd Polym, 2012, 87: 730-736.

[17]

Christensen T, Woeldike H, Boel E, Mortensen SB, Hjortshoej K, Thim L, Hansen MT. High level expression of recombinant genes in Aspergillus oryzae. Biotechnol, 1988, 6: 1419-1422.

[18]

Dawood MA, Eweedah NM, Khalafalla MM, Khalid A. Evaluation of fermented date palm seed meal with Aspergillusoryzae on the growth, digestion capacity and immune response of Nile tilapia (Oreochromis niloticus). Aquac Nutr, 2020, 26(3): 828-841.

[19]

de Castro RJ, Sato HH. Protease from Aspergillus oryzae: biochemical characterization and application as a potential biocatalyst for production of protein hydrolysates with antioxidant activities. J Food Process, 2014

[20]

Dias FFG, Ruiz ALTG, Della Torre A, Sato HH. Purification, characterization and antiproliferative activity of L-asparaginase from Aspergillus oryzae CCT 3940 with no glutaminase activity. Asian Pacific J Trop Biomed, 2016, 6: 785-794.

[21]

Dumas F, Kousara M, Chen L, Wei L, Le Bideau F. Nonhalogenated heterotricyclic sesquiterpenes from marine origin i: fused systems. Studies Nat Products Chem, 2017, 52: 269-302.

[22]

Dutta S, Ray S, Nagarajan K. Glutamic acid as anticancer agent: an overview. Saudi Pharma J, 2013, 21: 337-343.

[23]

Elkhateeb, W.A., 2005. Some mycological, phytopathological and physiological studies on mycobiota of selected newly reclaimed soils in Assiut Governorate, Egypt (M. Sc. Thesis, Faculty of Science, Assuit University, Egypt). p 238.

[24]

El-Sayed AS, Abdel-Ghany SE, Ali GS. Genome editing approaches: manipulating of lovastatin and taxol synthesis of filamentous fungi by CRISPR/Cas9 system. Appl Microbiol Biotechnol, 2017, 101(10): 3953-3976.

[25]

Eugster PJ, Salamin K, Grouzmann E, Monod M. Production and characterization of two major Aspergillus oryzae secreted prolyl endopeptidases able to efficiently digest proline-rich peptides of gliadin. Microbiology, 2015, 161: 2277-2288.

[26]

Ezekiel CN, Ortega-Beltran A, Oyedeji EO, Atehnkeng J, Kössler P, Tairu F, Hoeschle-Zeledon I, Karlovsky P, Cotty PJ, Bandyopadhyay R. Aflatoxin in chili peppers in Nigeria: extent of contamination and control using atoxigenic Aspergillus flavus genotypes as biocontrol agents. Toxins, 2019, 11(7): 429.

[27]

Fadel M, AbdEl-Halim S, Sharada H, Yehia A, Ammar M. Production of glucoamylase, α-amylase and cellulase by Aspergillus oryzae F-923 Cultivated on wheat bran under solid state fermentation. J Adv Biol Biotech, 2020, 23(4): 8-22.

[28]

Fernandez EQ, Moyer DL, Maiyuran S, Labaro A, Brody H. Vector-initiated transitive RNA interference in the filamentous fungus Aspergillus oryzae. Fungal Genet Biol, 2012, 49(4): 294-301.

[29]

Frisvad JC, Møller LL, Larsen TO, Kumar R, Arnau J. Safety of the fungal workhorses of industrial biotechnology: update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. Appl Microbiol Biotechnol, 2018, 102: 9481-9515.

[30]

Furlan SA, Schneider A, Merkle R, Jonas M, Jonas R. Formulation of a lactose-free, low-cost medium for the production of β-galactosidase by Kluyveromyces marxianus. Biotech Lett, 2000, 22: 589-593.

[31]

Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, Lee SI, Baştürkmen M, Spevak CC, Clutterbuck J, Kapitonov V. Sequencing of Aspergillusnidulans and comparative analysis with A.fumigatus and A.oryzae. Nature, 2005, 438(7071): 1105-1115.

[32]

Geddes JW, Bondada V, Pang Z. Sanberg PR, Nishino H, Borlongan CV. Mechanisms of 3-nitropropionic acid neurotoxicity. Mitochondrial inhibitors and neurodegenerative disorders, 2000, Totowa: Humana Press, 107-120.

[33]

Geiser DM, Timberlake WE, Arnold ML. Loss of meiosis in Aspergillus. Mol Biol Evol, 1996, 13: 809-817.

[34]

Geiser DM, Pitt JI, Taylor JW. Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus. Proc Natl Acad Sci USA, 1998, 95: 388-393.

[35]

Gomi K. Regulatory mechanisms for amylolytic gene expression in the koji mold Aspergillus oryzae. Biosci Biotechnol Biochem, 2019, 83(8): 1385-1401.

[36]

Govender N, Wong MY. Detection of oil palm root penetration by Agrobacterium-mediated transformed Ganoderma boninense, expressing green fluorescent protein. Phytopathology, 2017, 107(4): 483-490.

[37]

Gurung N, Ray S, Bose S, Rai V. A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. Biomed Res Int, 2013

[38]

Hajjaj H, Duboc P, Fay LB, Zbinden I, Macé K, Niederberger P. Aspergillusoryzae produces compounds inhibiting cholesterol biosynthesis downstream of dihydrolanosterol. FEMS Microbiol Lett, 2005, 242(1): 155-159.

[39]

He B, Hu Z, Ma L, Li H, Ai M, Han J, Zeng B. Transcriptome analysis of different growth stages of Aspergillus oryzae reveals dynamic changes of distinct classes of genes during growth. BMC Microbiol, 2018, 18(1): 1-12.

[40]

He B, Tu Y, Hu Z, Ma L, Dai J, Cheng X, Li H, Liu L, Zeng B. Genome-wide identification and expression profile analysis of the HOG gene family in Aspergillusoryzae. World J Microbiol Biotechnol, 2018, 34(2): 1-35.

[41]

He B, Tu Y, Jiang C, Zhang Z, Li Y, Zeng B. Functional genomics of Aspergillusoryzae: strategies and progress. Microorganisms, 2019, 7(4): 103.

[42]

Hoa BT, Hung PV. Optimization of nutritional composition and fermentation conditions for cellulase and pectinase production by Aspergillus oryzae using response surface methodology. Int Food Res J, 2013, 20(6): 3269-3274.

[43]

Hoang HD, Maruyama JI, Kitamoto K. Modulating endoplasmic reticulum-Golgi cargo receptors for improving secretion of carrier-fused heterologous proteins in the filamentous fungus Aspergillus oryzae. Appl Environ Microbiol, 2015, 81(2): 533-543.

[44]

Huynh HH, Morita N, Sakamoto T, Katayama T, Miyakawa T, Tanokura M, Chiba Y, Shinkura R, Maruyama JI. Functional production of human antibody by the filamentous fungus Aspergillus oryzae. Fungal Biology and Biotechnology, 2020, 7(1): 1-15.

[45]

Iftikhar T, Niaz M, Jabeen R, Haq IU. Purification and characterization of extracellular lipases. Pak J Bot, 2011, 43(3): 1541-1545.

[46]

James JA, Lee BH. Glucoamylases: microbial sources, industrial applications and molecular biology: A review. J Food Biochem, 1997, 21: 1-52.

[47]

Ji L, Wang J, Luo Q, Ding Q, Tang W, Chen X, Liu L. Enhancing L-malate production of Aspergillus oryzae by nitrogen regulation strategy. Appl Microbiol Biotechnol, 2021, 105: 3101-3113.

[48]

Jiang D, Zhu W, Wang Y, Sun C, Zhang KQ, Yang J. Molecular tools for functional genomics in filamentous fungi: recent advances and new strategies. Biotechnol Adv, 2013, 31(8): 1562-1574.

[49]

Jin FJ, Maruyama JI, Juvvadi PR, Arioka M, Kitamoto K. Development of a novel quadruple auxotrophic host transformation system by argB gene disruption using adeA gene and exploiting adenine auxotrophy in Aspergillus oryzae. FEMS Microbiol Lett, 2004, 239(1): 79-85.

[50]

Jin FJ, Maruyama JI, Juvvadi PR, Arioka M, Kitamoto K. Adenine auxotrophic mutants of Aspergillus oryzae: development of a novel transformation system with triple auxotrophic hosts. Biosci Biotechnol Biochem, 2004, 68(3): 656-662.

[51]

Jin FJ, Hu S, Wang BT, Jin L. Advances in genetic engineering technology and its application in the industrial fungus Aspergillus oryzae. Front Microbiol, 2021, 12: 353-366.

[52]

Jørgensen TR. Identification and toxigenic potential of the industrially important fungi, Aspergillus oryzae and Aspergillus sojae. J Food Prot, 2007, 70(12): 2916-2934.

[53]

Katayama T, Tanaka Y, Okabe T, Nakamura H, Fujii W, Kitamoto K, Maruyama JI. Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae. Biotech Lett, 2016, 38(4): 637-642.

[54]

Ketipally R, Raghu Ram M. Optimization of pectinase production by Aspergillus oryzae RR 103. Curr Agri Res J, 2018, 6(1): 37-44.

[55]

Kim SH, Yu DJ, Lee SJ, Park SY, Ryu KS, Lee DG. Effects of feeding Aspergillus oryzae ferments on performance, intestinal microflora, blood serum components and environmental factors in broiler. Korean J Poult Sci, 2003, 30: 151-159.

[56]

King AM, Reid-Yu SA, Wang W, King DT, De Pascale G, Strynadka NC, Walsh TR, Coombes BK, Wright GD. Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature, 2014, 510(7506): 503-506.

[57]

Kitamoto K. Cell biology of the Koji mold Aspergillus oryzae. Biosci Biotechnol Biochem, 2015, 79(6): 863-869.

[58]

Klich MA. Aspergillus flavus: the major producer of aflatoxin. Mol Plant Pathol, 2007, 8: 713-722.

[59]

Kobayashi T, Abe K, Asai K, Gomi K, Juvvadi PR, Kato M, Kitamoto K, Takeuchi M, Machida M. Genomics of Aspergillus oryzae. Biosci Biotechnol Biochem, 2007, 71(3): 646-670.

[60]

Kotnik T, Frey W, Sack M, Meglič SH, Peterka M, Miklavčič D. Electroporation-based applications in biotechnology. Trends Biotechnol, 2015, 33(8): 480-488.

[61]

Krijgsheld P, Bleichrodt RV, Van Veluw GJ, Wang F, Müller WH, Dijksterhuis J, Wösten HAB. Development in Aspergillus. Stud Mycol, 2013, 74: 1-29.

[62]

Kubodera T, Yamashita N, Nishimura A. Pyrithiamine resistance gene (ptrA) of Aspergillus oryzae: cloning, characterization and application as a dominant selectable marker for transformation. Biosci Biotechnol Biochem, 2000, 64: 1416-1421.

[63]

Kück U, Hoff B. New tools for the genetic manipulation of filamentous fungi. Appl Microbiol Biotechnol, 2010, 86(1): 51-62.

[64]

Kumar P, Mahato DK, Kamle M, Mohanta TK, Kang SG. Aflatoxins: a global concern for food safety, human health and their management. Front Microbiol, 2017, 7: 2170.

[65]

Kusumoto KI, Nogata Y, Ohta H. Directed deletions in the aflatoxin biosynthesis gene homolog cluster of Aspergillus oryzae. Curr Genet, 2000, 37: 104-111.

[66]

Lakshmi M, Jyothi P. Production and optimization of glucoamylase from Aspergillus oryzae NCIM 1212 using wheat bran, varying chemical parameters under solid state fermentation. Int J Curr Microbiol App Science, 2014, 3(5): 70-76.

[67]

Lee K, Lee SK, Lee BD. Aspergillus oryzae as probiotic in poultry-A review. Int J Poultry Sci, 2006, 5: 1-3.

[68]

Lee JH, Jo EH, Hong EJ, Kim KM, Lee I. Safety evaluation of filamentous fungi isolated from industrial doenjang koji. J Microbiol Biotechnol, 2014, 24(10): 1397-1404.

[69]

Li S, Cong Y, Liu Y, Wang T, Shuai Q, Chen N, Gai J, Li Y. Optimization of Agrobacterium-mediated transformation in soybean. Front Plant Sci, 2017, 8: 246.

[70]

Liang Y, Pan L, Lin Y. Analysis of extracelular proteins of Aspergillus oryzae grown on soy sauce koji. Biosci Biotechnol Biochem, 2009, 73: 192-195.

[71]

Lichius A, Ruiz DM, Zeilinger S. Nevalainen H. Genetic transformation of filamentous fungi: achievements and challenges. Grand challenges in fungal biotechnology, 2020, Cham: Springer, 123-164.

[72]

Lobato CC, Ordoñez ME, Queiroz RL, Santos CB, Borges RS. A comparative study between kojic acid and its methylated derivatives as antioxidant related to maltol and alomaltol. Chem Data Collect, 2020, 28: 100464.

[73]

Machida M. Progress of Aspergillus oryzae genomics. Adv Appl Microbiol, 2002, 51: 81-106.

[74]

Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto KI, Arima T, Akita O, Kashiwagi Y, Abe K. Genome sequencing and analysis of Aspergillus oryzae. Nature, 2005, 438(7071): 1157-1161.

[75]

Machida M, Yamada O, Gomi K. Genomics of Aspergillus oryzae: learning from the history of Koji mold and exploration of its future. DNA Res, 2008, 15: 173-183.

[76]

Marui J, Ohashi-Kunihiro S, Ando T, Nishimura M, Koike H, Machida M. Penicillin biosynthesis in Aspergillus oryzae and its overproduction by genetic engineering. J Biosci Bioeng, 2010, 110: 8-11.

[77]

Maruyama JI, Kitamoto K. Multiple gene disruptions by marker recycling with highly efficient gene-targeting background (ΔligD) in Aspergillus oryzae. Biotech Lett, 2008, 30(10): 1811.

[78]

Mei YZ, Zhu YL, Huang PW, Yang Q, Dai CC. Strategies for gene disruption and expression in filamentous fungi. Appl Microbiol Biotechnol, 2019, 103(15): 6041-6059.

[79]

Meneghel L, Reis GP, Reginatto C, Malvessi E, da Silveira MM. Assessment of pectinase production by Aspergillus oryzae in growth-limiting liquid medium under limited and non-limited oxygen supply. Process Biochem, 2014, 49: 1800-1807.

[80]

Miura D, Sugiyama K, Ito A, Ohba-Tanaka A, Tanaka M, Shintani T, Gomi K. The PDR-type ABC transporters AtrA and AtrG are involved in azole drug resistance in Aspergillus oryzae. Biosci Biotechnol Biochem, 2018, 82: 1840-1848.

[81]

Mohamad R, Mohamed MS, Suhaili N, Salleh MM, Ariff AB. Kojic acid: applications and development of fermentation process for production. Biotechnol Mol Bio Rev, 2010, 5: 24-37.

[82]

Moubasher AH. Soil fungi in Qatar and other Arab countries, 1993, Doha: The Scientific And Applied Research Centre University of Qatar, 566.

[83]

Murphy MM, Baker LA, Robbins RD, Richeson JT, Pipkin JL. 53 Effect of Aspergillus Niger and Oryzae on the digestibility of Coastal Bermudagrass and Teff hay in horses. J Equine Vet Sci, 2021, 100: 103516.

[84]

Murthy PS, Sano M, Hattori R, Kusumoto KI, Suzuki S. Aspergillus Oryzae Strain with Improved Conidiation after Light Stimulation. JARQ, 2018, 52(1): 23-28.

[85]

Nakajima KI, Asakura T, Maruyama JI, Morita Y, Oike H, Shimizu-Ibuka A, Misaka T, Sorimachi H, Arai S, Kitamoto K, Abe K. Extracellular production of neoculin, a sweet-tasting heterodimeric protein with taste-modifying activity, by Aspergillus oryzae. Appl Environ Microbiol, 2006, 72: 3716-3723.

[86]

Nakamura S. Muta-aspergillic acid, a new growth inhibitant against hiochi-bacteria. Bull Agri Chem Soc Japan, 1960, 24: 629-630.

[87]

Nakamura H, Kikuma T, Jin FJ, Maruyama JI, Kitamoto K. AoRim15 is involved in conidial stress tolerance, conidiation and sclerotia formation in the filamentous fungus Aspergillus oryzae. J Biosci Bioeng, 2016, 121: 365-371.

[88]

Newsome R, Tran N, Paoli GM, Jaykus LA, Tompkin B, Miliotis M, Ruthman T, Hartnett E, Busta FF, Petersen B, Shank F. Development of a risk-ranking framework to evaluate potential high-threat microorganisms, toxins, and chemicals in food. J Food Sci, 2009, 74: R39-R45.

[89]

Nguyen KT, Ho QN, Pham TH, Phan TN, Tran VT. The construction and use of versatile binary vectors carrying pyrG auxotrophic marker and fluorescent reporter genes for Agrobacterium-mediated transformation of Aspergillus oryzae. World J Microbiol Biotechnol, 2016, 32(12): 204.

[90]

Nguyen KT, Ho QN, Do LT, Mai LT, Pham DN, Tran HT, Le DH, Nguyen HQ, Tran VT. A new and efficient approach for construction of uridine/uracil auxotrophic mutants in the filamentous fungus Aspergillus oryzae using Agrobacterium tumefaciens-mediated transformation. World J Microbiol Biotechnol, 2017, 33(6): 107.

[91]

Nishimura A, Okamoto S, Yoshizako F, Morishima I, Ueno T. Stimulatory effect of acetate and propionate on aspergillic acid formation by Aspergillus oryzae A 21. J Ferment Bioeng, 1991, 72: 461-464.

[92]

Nizamuddin S, Sridevi A, Narasimha G. Production of β-galactosidase by Aspergillus oryzae in solid-state fermentation. Afr J Biotech, 2008, 7(8): 1096-1100.

[93]

Nødvig CS, Nielsen JB, Kogle ME, Mortensen UH. A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLoS ONE, 2015, 10(7): e0133085.

[94]

Ntana F, Mortensen UH, Sarazin C, Figge R. Aspergillus: A powerful protein production platform. Catalysts, 2020, 10(9): 1064.

[95]

Ogawa M, Tokuoka M, Jin FJ, Takahashi T, Koyama Y. Genetic analysis of conidiation regulatory pathways in koji-mold Aspergillus oryzae. Fungal Genet Biol, 2010, 47(1): 10-18.

[96]

Olempska-Beer Z, (2007) Asparaginase from Aspergillus oryzae encoded by the asparaginase gene from A. oryzae. Chem Tech Ass (CTA), pp 1–7.

[97]

Parbat R, Singhal B. Production of glucoamylase by Aspergillusoryzae under solid state fermentation using agro industrial products. Int J Microbiol Res, 2011, 2: 204-207.

[98]

Park HS, Lee MK, Han KH, Kim MJ, Yu JH. Hoffmeister D, Gressler M. Developmental decisions in Aspergillus nidulans. Biology of the fungal cell, 2019, Cham: Springer, 63-80.

[99]

Patel GB, Mackenzie CR, Agnew BJ. Properties and potential advantages of β-galactosidase from Bacteroidespolypragmatus. Appl Microbiol Biotechnol, 1985, 22: 114-120.

[100]

Pfefferle W, Anke H, Bross M, Steffan B, Vianden R, Steglich W. Asperfuran, a novel antifungal metabolite from Aspergillusoryzae. J Antibiotics, 1990, 43: 648-654.

[101]

Pinheiro VE, Desagiacomo CC, Michelin M, Maller A, Monteiro LM, Jorge JA, Polizeli MD. Neosartoryaglabra polygalacturonase produced from fruit peels as inducers has the potential for application in passion fruit and apple juices. Braz J Food Technol, 2017, 20: 1-11.

[102]

Priji P, Sajith S, Faisal PA, Benjamin S. Microbial lipases—Properties and applications. J Microbiol Biotechnol Food Sci, 2016, 6: 799-807.

[103]

Raimbault M. General and microbiological aspects of solid substrate fermentation. Electron J Biotechnol, 1998, 1(3): 174-188.

[104]

Ram MR, Kumar S. Production of alkaline protease from Aspergillus oryzae isolated from seashore of Bay of Bengal. J Appl Nat Sci, 2018, 10(4): 1210-1215.

[105]

Ramachandran S, Patel AK, Nampoothiri KM, Chandran S, Szakacs G, Soccol CR, C.R., Pandey, A.. Alpha Amylase from a Fungal Culture Grown on Oil Cakes and Its Properties. Braz Arch Biol Technol, 2004, 47(2): 309-317.

[106]

Ramakrishna V, Rajasekhar S, Reddy LS. Identification and purification of metalloprotease from dry grass pea (Lathyrussativus L) seeds. Appl Biochem Biotechnol, 2010, 160(1): 63-71.

[107]

Ramakrishnan CV, Sathe V. Effect of vitamin K3 on inducing its biosynthesis in moulds. Sci Cult (calcutta), 1956, 22: 340.

[108]

Ramirez-Prado JH, Moore GG, Horn BW, Carbone I. Characterization and population analysis of the mating-type genes in Aspergillusflavus and Aspergillusparasiticus, Fungal Genet. Biol, 2008, 45: 1292-1299.

[109]

Rand TG, Chang CT, McMullin DR, Miller JD. Inflammation associated gene expression in RAW 264.7 macrophages induced by toxins from fungi common on damp building materials. Toxicol in Vitro, 2017, 43: 16-20.

[110]

Raveendran S, Parameswaran B, Ummalyma S, Abraham S, Mathew A, Madhavan A, Rebello S, Pandey A. Applications of microbial enzymes in food industry. Food Technol Biotechnol, 2018, 56(1): 16-30.

[111]

Rebollar-Pérez G, Romero-Guido C, Baez A, Torres E. Grunwald P. Halogenases with potential applications for the synthesis of halogenated pharmaceuticals. Pharmaceutical biocatalysis, 2019, Singapore: Jenny Stanford Publishing, 579-602.

[112]

Reichelt JR. Godfrey RJ. Industrial enzymology, 1983, New York: Nature Press, 138.

[113]

Rodriguez VB, Alameda EJ, Gallegos J, Requena AR, Lopez A. Enzymatic hydrolysis of soluble starch with an alpha amylase from Bacillus licheniformis. Biotechnol Progr, 2006, 22(3): 718-722.

[114]

Saeedi M, Eslamifar M, Khezri K. Kojic acid applications in cosmetic and pharmaceutical preparations. Biomed Pharmacother, 2019, 110: 582-593.

[115]

Sakai H. On vitamin B12 production by fermentation. Part. 2. Production test of B12 by various microorganisms. J Agr Chem Soc Japan, 1953, 27: 405-407.

[116]

Sher H, Faheem M, Ghani A, Mehmood R, Rehman H, Bokhari SA. Optimization of cellulase enzyme production from Aspergillus oryzae for industrial applications. World J Biol Biotechnol, 2017, 2(2): 155-158.

[117]

Silva TAS, Knob A, Tremacoldi CR, Brochetto- Braga MR, Carmona EC. Purification and some properties of an extracellular acid protease from Aspergillus clavatus. World J Microbiol Biotechnol, 2011, 27(11): 2491-2497.

[118]

Son YE, Park HS. Genetic manipulation and transformation methods for Aspergillus spp. Mycobiology, 2020

[119]

Son SY, Lee S, Singh D, Lee NR, Lee DY, Lee CH. Comprehensive secondary metabolite profiling toward delineating the solid and submerged-state fermentation of Aspergillus oryzae KCCM 12698. Front Microbiol, 2018, 9: 1076.

[120]

Steensels J, Gallone B, Voordeckers K, Verstrepen KJ. Domestication of industrial microbes. Curr Biol, 2019, 29(10): R381-R393.

[121]

Subramaniyam R, Vimala R. Solid state and submerged fermentation for the production of bioactive substances: a comparative study. J Sci Nat, 2012, 3(3): 480-486.

[122]

Suzuki S, Tada S, Fukuoka M, Taketani H, Tsukakoshi Y, Matsushita M, Oda K, Kusumoto KI, Kashiwagi Y, Sugiyama M. A novel transformation system using a bleomycin resistance marker with chemosensitizers for Aspergillus oryzae. Biochem Biophys Res Commun, 2009, 383(1): 42-47.

[123]

Tada S, Matsushita-Morita M, Suzuki S, Kusumoto KI, Kashiwagi Y. Characterization of a neutral ceramidase orthologue from Aspergillus oryzae. FEMS Microbiol Lett, 2009, 298(2): 157-165.

[124]

Takamine J (1894) United States Patents 525,820 and 525,823. Turner, W.B. 1975. Commercially important secondary metabolites. In: Smith JE, Berry DK. (eds) The Filamentous Fungi, Industrial Mycology, vol 1. Wiley, pp. 122–142.

[125]

Taylor MJ, Richardson T. Applications of microbial enzymes in food systems and in biotechnology. Adv Appl Microbiol, 1979, 25: 7-35.

[126]

Timofeev S, Tsarev A, Senderskiy I, Rogozhin E, Mitina G, Kozlov S, Dolgikh V. Efficient transformation of the entomopathogenic fungus Lecanicillium muscarium by electroporation of germinated conidia. Mycoscience, 2019, 60(3): 197-200.

[127]

Tsuchiya K, Tada S, Gomi K, Kumagai C, Jigami Y, Tamura G. High levelexpression of the synthetic human lysozyme gene in Aspergillus oryzae. Appl Microbiol Biotechnol, 1992, 38(1): 109-114.

[128]

Ullah M, Xia L, Xie S, Sun S. CRISPR/Cas9-based genome engineering: A new breakthrough in the genetic manipulation of filamentous fungi. Biotechnol Appl Biochem, 2020

[129]

Van den Berg MA, Maruthachalam K. Genetic Transformation Systems in Fungi, 2015, Cham: Springer International Publishing, 8-15.

[130]

Wada R, Maruyama J-I, Yamaguchi H. Presence and functionality of mating type genes in the supposedly asexual filamentous fungus Aspergillus oryzae. Appl Environ Microbiol, 2012, 78: 2819-2829.

[131]

Wang D, He D, Li G, Gao S, Lv H, Shan Q, Wang L. An efficient tool for random insertional mutagenesis: Agrobacterium tumefaciens-mediated transformation of the filamentous fungus Aspergillus terreus. J Microbiol Methods, 2014, 98: 114-118.

[132]

Wang S, Chen H, Tang X, Zhang H, Chen W, Chen YQ. Molecular tools for gene manipulation in filamentous fungi. Appl Microbiol Biotechnol, 2017, 101(22): 8063-8075.

[133]

Watarai N, Yamamoto N, Sawada K, Yamada T. Evolution of Aspergillusoryzae before and after domestication inferred by large-scale comparative genomic analysis. DNA Res, 2019, 26(6): 465-472.

[134]

Xu D, Pan L, Zhao H, Zhao M, Sun J, Liu D. Breeding and identification of novel koji molds with high activity of acid protease by genome recombination between Aspergillus oryzae and Aspergillus niger. J Ind Microbiol Biotechnol, 2011, 38(9): 1255-1265.

[135]

Yamada O, Ikeda R, Ohkita Y, Hayashi R, Sakamoto K, Akita O. Gene silencing by RNA interference in the koji mold Aspergillus oryzae. Biosci Biotechnol Biochem, 2007, 71(1): 138-144.

[136]

Yamada R, Yoshie T, Wakai S, Asai-Nakashima N, Okazaki F, Ogino C, Hisada H, Tsutsumi H, Hata Y, Kondo A. Aspergillus oryzae-based cell factory for direct kojic acid production from cellulose. Microb Cell Fact, 2014, 13(1): 71.

[137]

Yasui M, Oda K, Masuo S, Hosoda S, Katayama T, Maruyama JI, Takaya N, Takeshita N. Invasive growth of Aspergillus oryzae in rice koji and increase of nuclear number. Fungal Biol Biotechnol, 2020, 7: 1-15.

[138]

Yokota JI, Shiro D, Tanaka M, Onozaki Y, Mizutani O, Kakizono D, Ichinose S, Shintani T, Gomi K, Shintani T. Cellular responses to the expression of unstable secretory proteins in the filamentous fungus Aspergillus oryzae. Appl Microbiol Biotechnol, 2017, 101(6): 2437-2446.

[139]

Yoon J, Aishan T, Maruyama JI, Kitamoto K. Enhanced production and secretion of heterologous proteins by the filamentous fungus Aspergillus oryzae via disruption of vacuolar protein sorting receptor gene Aovps10. Appl Environ Microbiol, 2010, 76(17): 5718-5727.

[140]

Yoon J, Maruyama JI, Kitamoto K. Disruption of ten protease genes in the filamentous fungus Aspergillus oryzae highly improves production of heterologous proteins. Appl Microbiol Biotechnol, 2011, 89(3): 747-759.

[141]

Yoshino-Yasuda S, Mori A, Ishihara N, Hasegawa O, Kato M, Kitamoto N. Development of a highly efficient gene replacement system for an industrial strain of Aspergillus oryzae used in the production of miso, a Japanese fermented soybean paste. Food Sci Technol Res, 2011, 17(2): 161-166.

[142]

Yu JH. Regulation of development in Aspergillus nidulans and Aspergillus fumigatus. Mycobiology, 2010, 38: 229-237.

[143]

Yu XC, Ma SL, Xu Y, Fu CH, Jiang CY, Zhou CY. Construction and application of a novel genetically engineered Aspergillus oryzae for expressing proteases. Elec J Biotechnol, 2017, 29: 32-38.

[144]

Zambare V. Solid state fermentation of Aspergillus oryzae for glucoamylase production on agro residues. Int J Life Sci, 2010, 4: 16-25.

[145]

Zhang J, Wang S, Wei Q, Guo Q, Bai Y, Yang S, Song F, Zhang L, Lei X. Synthesis and biological evaluation of Aspergillomarasmine A derivatives as novel NDM-1 inhibitor to overcome antibiotics resistance. Bioorganic Med Chem, 2017, 25: 5133-5141.

[146]

Zhang S, Ban A, Ebara N, Mizutani O, Tanaka M, Shintani T, Gomi K. Self-excising Cre/mutant lox marker recycling system for multiple gene integrations and consecutive gene deletions in Aspergillus oryzae. J Biosci Bioeng, 2017, 123(4): 403-411.

[147]

Zhong Y, Lu X, Xing L, Ho SWA, Kwan HS. Genomic and transcriptomic comparison of Aspergillus oryzae strains: a case study in soy sauce koji fermentation. J Ind Microbiol Biotechnol, 2018, 45(9): 839-853.

[148]

Zhou M, Zhou K, He P, Wang KM, Zhu RZ, Wang YD, Dong W, Li GP, Yang HY, Ye YQ, Du G. Antiviral and cytotoxic isocoumarin derivatives from an endophytic fungus Aspergillus oryzae. Planta Med, 2016, 82(5): 414-417.

[149]

Zhu L, Maruyama JI, Kitamoto K. Further enhanced production of heterologous proteins by double-gene disruption (ΔAosedD ΔAovps10) in a hyper-producing mutant of Aspergillus oryzae. Appl Microbiol Biotechnol, 2013, 97(14): 6347-6357.

AI Summary AI Mindmap
PDF

231

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/