De novo biosynthesis of C-arabinosylated flavones by utilization of indica rice C-glycosyltransferases

Zhuo Chen , Yuwei Sun , Guangyi Wang , Ying Zhang , Qian Zhang , Yulian Zhang , Jianhua Li , Yong Wang

Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 49

PDF
Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 49 DOI: 10.1186/s40643-021-00404-3
Research

De novo biosynthesis of C-arabinosylated flavones by utilization of indica rice C-glycosyltransferases

Author information +
History +
PDF

Abstract

Flavone C-arabinosides/xylosides are plant-originated glycoconjugates with various bioactivities. However, the potential utility of these molecules is hindered by their low abundance in nature. Engineering biosynthesis pathway in heterologous bacterial chassis provides a sustainable source of these C-glycosides. We previously reported bifunctional C-glucosyl/C-arabinosyltransferases in Oryza sativa japonica and O. sativa indica, which influence the C-glycoside spectrum in different rice varieties. In this study, we proved the C-arabinosyl-transferring activity of rice C-glycosyltransferases (CGTs) on the mono-C-glucoside substrate nothofagin, followed by taking advantage of specific CGTs and introducing heterologous UDP-pentose supply, to realize the production of eight different C-arabinosides/xylosides in recombinant E. coli. Fed-batch fermentation and precursor supplement maximized the titer of rice-originated C-arabinosides to 20–110 mg/L in an E. coli chassis. The optimized final titer of schaftoside and apigenin di-C-arabinoside reached 19.87 and 113.16 mg/L, respectively. We demonstrate here the success of de novo bio-production of C-arabinosylated and C-xylosylated flavones by heterologous pathway reconstitution. These results lay a foundation for further optimal manufacture of complex flavonoid compounds in microbial cell factories.

Keywords

De novo biosynthesis / C-Arabinoside flavone / C-Glycosyltransferase / Rice

Cite this article

Download citation ▾
Zhuo Chen, Yuwei Sun, Guangyi Wang, Ying Zhang, Qian Zhang, Yulian Zhang, Jianhua Li, Yong Wang. De novo biosynthesis of C-arabinosylated flavones by utilization of indica rice C-glycosyltransferases. Bioresources and Bioprocessing, 2021, 8(1): 49 DOI:10.1186/s40643-021-00404-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Besson E, Dellamonica G, Chopin J, Markham KR, Kim M, Koh H, Fukami H. C-glycosylflavones from Oryza sativa. Phytochemistry, 1985, 24: 1061-1064.

[2]

Brazier-Hicks M, Edwards R. Metabolic engineering of the flavone-C-glycoside pathway using polyprotein technology. Metab Eng, 2013, 16: 11-20.

[3]

Chen D, Fan S, Chen R, Xie K, Yin S, Sun L, Liu J, Yang L, Kong J, Yang Z, Dai J. Probing and engineering key residues for bis-C-glycosylation and promiscuity of a C-glycosyltransferase. ACS Catal, 2018, 8: 4917-4927.

[4]

Das S, Teja KC, Mukherjee S, Seal S, Sah RK, Duary B, Kim K, Bhattacharya SS. Impact of edaphic factors and nutrient management on the hepatoprotective efficiency of carlinoside purified from pigeon pea leaves: An evaluation of UGT1A1 activity in hepatitis induced organelles. Environ Res, 2018, 161: 512-523.

[5]

Ettayapuram Ramaprasad AS, Durkin KA, Smith MT. Structure-based virtual screening of a natural product database to identify several possible SARS-CoV-2 main protease inhibitors. ChemRxiv, 2020

[6]

Feng C, Li S, Taguchi G, Wu Q, Yin D, Gu Z, Wu J, Xu W, Liu C, Wang L. Enzymatic basis for stepwise C-glycosylation in the formation of flavonoid di-C-glycosides in sacred lotus (Nelumbo nucifera Gaertn.). Plant J, 2021, 106: 351-365.

[7]

Gu X, Lee S, Bar-Peled M. Biosynthesis of UDP-xylose and UDP-arabinose in Sinorhizobium meliloti 1021: first characterization of a bacterial UDP-xylose synthase, and UDP-xylose 4-epimerase. Microbiol, 2011, 157: 260-269.

[8]

He J, Zhao P, Hu Z, Liu S, Kuang Y, Zhang M, Li B, Yun C, Qiao X, Ye M. Molecular and structural characterization of a promiscuous C-glycosyltransferase from Trollius chinensis. Angew Chem Int Ed, 2019, 58: 11513-11520.

[9]

Hooper AM, Tsanuo MK, Chamberlain K, Tittcomb K, Scholes J, Hassanali A, Khan ZR, Pickett JA. Isoschaftoside, a C-glycosylflavonoid from Desmodium uncinatum root exudate, is an allelochemical against the development of Striga. Phytochemistry, 2010, 71: 904-908.

[10]

Ito T, Fujimoto S, Shimosaka M, Taguchi G. Production of C-glucosides of flavonoids and related compounds by Escherichia coli expressing buckwheat C-glucosyltransferase. Plant Biotechnol, 2014, 31: 519-524.

[11]

Joshi T, Joshi T, Sharma P, Mathpal S, Pundir H, Bhatt V, Chandra S. In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking. Eur Rev Med Pharmacol Sci, 2020, 24: 4529-4536.

[12]

Kim S, Lee H, Park K, Kim B, Ahn J. Metabolic engineering of Escherichia coli for the biosynthesis of flavonoid-O-glucuronides and flavonoid-O-galactoside. Appl Microbiol Biotechnol, 2015, 99: 2233-2242.

[13]

Kim B, Woo S, Kim M, Kwon S, Lee J, Sung S, Koh H. Identification and quantification of flavonoids in yellow grain mutant of rice (Oryza sativa L.). Food Chem, 2018, 241: 154-162.

[14]

Kim P, Shin J, Jo D, Shin D, Choi D, Kim W, Park K, Kim J, Joo C, Lee J, Choi Y, Shin Y, Shin J, Jeon H, Seo J, Cho D. Anti-melanogenic activity of schaftoside in Rhizoma Arisaematis by increasing autophagy in B16F1 cells. Biochem Biophys Res Commun, 2018, 503: 309-315.

[15]

Li J, Tian C, Xia Y, Mutanda I, Wang K, Wang Y. Production of plant-specific flavones baicalein and scutellarein in an engineered E. coli from available phenylalanine and tyrosine. Metab Eng, 2019, 52: 124-133.

[16]

Lim C, Wong L, Bhan N, Dvora H, Xu P, Venkiteswaran S, Koffas MA. Development of a recombinant Escherichia coli strain for overproduction of the plant pigment anthocyanin. Appl Environ Microbiol, 2015, 81: 6276-6284.

[17]

Liu M, Liu C, Chen H, Huang X, Zeng X, Zhou J, Mi S. Prevention of cholesterol gallstone disease by schaftoside in lithogenic diet-induced C57BL/6 mouse model. Eur J Pharmacol, 2017, 815: 1-9.

[18]

Liu X, Cheng J, Zhang G, Ding W, Duan L, Yang J, Kui L, Cheng X, Ruan J, Fan W, Chen J, Long G, Zhao Y, Cai J, Wang W, Ma Y, Dong Y, Yang S, Jiang H. Engineering yeast for the production of breviscapine by genomic analysis and synthetic biology approaches. Nat Commun, 2018, 9: 448.

[19]

Malla S, Pandey RP, Kim B, Sohng J. Regiospecific modifications of naringenin for astragalin production in Escherichia coli. Biotechnol Bioeng, 2013, 110: 2525-2535.

[20]

Melo GOD, Muzitano MF, Legora-Machado A, Almeida TA, De Oliveira DB, Kaiser CR, Koatz VL, Costa SS. C-glycosylflavones from the aerial parts of Eleusine indica inhibit LPS-induced mouse lung inflammation. Planta Med, 2005, 71: 362-363.

[21]

Pandey RP, Malla S, Simkhada D, Kim BG, Sohng JK. Production of 3-O-xylosyl quercetin in Escherichia coli. Appl Microbiol Biotechnol, 2013, 97: 1889-1901.

[22]

Pei J, Dong P, Wu T, Zhao L, Fang X, Cao F, Tang F, Yue Y. Metabolic engineering of Escherichia coli for astragalin biosynthesis. J Agric Food Chem, 2016, 64: 7966-7972.

[23]

Putkaradze N, Teze D, Fredslund F, Welner DH. Natural product C-glycosyltransferases—a scarcely characterised enzymatic activity with biotechnological potential. Nat Prod Rep, 2021, 38: 432-443.

[24]

Ramarathnam N, Osawa T, Namiki M, Kawakishi S. Chemical studies on novel rice hull antioxidants. 2. Identification of isovitexin, a C-glycosyl flavonoid. J Agric Food Chem, 1989, 37: 316-319.

[25]

Schmidt S, Rainieri S, Witte S, Matern U, Martens S. Identification of a Saccharomyces cerevisiae glucosidase that hydrolyzes flavonoid glucosides. Appl Environ Microbiol, 2011, 77: 1751-1757.

[26]

Shrestha A, Pandey RP, Dhakal D, Parajuli P, Sohng JK. Biosynthesis of flavone C-glucosides in engineered Escherichia coli. Appl Microbiol Biotechnol, 2018, 102: 1251-1267.

[27]

Simkhada D, Lee H, Sohng J. Genetic engineering approach for the production of rhamnosyl and allosyl flavonoids from Escherichia coli. Biotechnol Bioeng, 2010, 107: 154-162.

[28]

Stevenson PC, Kimmins FM, Grayer RJ, Raveendranath S. Schaftosides from rice phloem as feeding inhibitors and resistance factors to brown planthoppers, Nilaparvata lugens. Entomol Exp Appl, 1996, 80: 246-249.

[29]

Sun Y, Chen Z, Yang J, Mutanda I, Li S, Zhang Q, Zhang Y, Zhang Y, Wang Y. Pathway-specific enzymes from bamboo and crop leaves biosynthesize anti-nociceptive C-glycosylated flavones. Commun Biol, 2020, 3: 110.

[30]

Talhi O, Silva AMS. Advances in C-glycosylflavonoid Research. Curr Org Chem, 2012, 16: 859-896.

[31]

Vanegas KG, Larsen AB, Eichenberger M, Fischer D, Mortensen UH, Naesby M. Indirect and direct routes to C-glycosylated flavones in Saccharomyces cerevisiae. Microb Cell Fact, 2018, 17: 107.

[32]

Wang Z, Gao H, Wang S, Zhang M, Chen K, Zhang Y, Wang H, Han B, Xu L, Song T, Yun C, Qiao X, Ye M. Dissection of the general two-step di-C-glycosylation pathway for the biosynthesis of (iso)schaftosides in higher plants. Proc Natl Acad Sci USA, 2020, 117: 30816-30823.

[33]

Yang Z, Nakabayashi R, Mori T, Takamatsu S, Kitanaka S, Saito K. Metabolome analysis of Oryza sativa (rice) using liquid chromatography-mass spectrometry for characterizing organ specificity of flavonoids with anti-inflammatory and anti-oxidant activity. Chem Pharm Bull, 2016, 64: 952-956.

[34]

Zhang M, Li F, Li K, Wang Z, Wang Y, He J, Su H, Zhang Z, Chi C, Shi X, Yun C, Zhang Z, Liu Z, Zhang L, Yang D, Ma M, Qiao X, Ye M. Functional characterization and structural basis of an efficient di-C-glycosyltransferase from Glycyrrhiza glabra. J Am Chem Soc, 2020, 142: 3506-3512.

Funding

National Key R&D Program of China(2018YFA0900600)

Program of Shanghai Academic Research Leader(20XD1404400)

Strategic Priority Research Program “Molecular mechanism of Plant Growth and Development” of CAS(XDB27020202)

National Natural Science Foundation of China(32070328)

Construction of the Registry and Database of Bioparts for Synthetic Biology of the Chinese Academy of Science(ZSYS-016)

International Partnership Program of Chinese Academy of Science(153D31KYSB20170121)

National Key Laboratory of Plant Molecular Genetics

Youth Innovation Promotion Association of the Chinese Academy of Sciences

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/