Microbial production of butyl butyrate: from single strain to cognate consortium

Jean Paul Sinumvayo , Yin Li , Yanping Zhang

Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 50

PDF
Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 50 DOI: 10.1186/s40643-021-00403-4
Review

Microbial production of butyl butyrate: from single strain to cognate consortium

Author information +
History +
PDF

Abstract

Butyl butyrate (BB) is an important chemical with versatile applications in beverage, food and cosmetics industries. Since chemical synthesis of BB may cause adverse impacts on the environment, biotechnology is an emerging alternative approach for microbial esters biosynthesis. BB can be synthesized by using a single Clostridium strain natively producing butanol or butyrate, with exogenously supplemented butyrate or butanol, in the presence of lipase. Recently, E. coli strains have been engineered to produce BB, but the titer and yield remained very low. This review highlighted a new trend of developing cognate microbial consortium for BB production and associated challenges, and end up with new prospects for further improvement for microbial BB biosynthesis.

Keywords

Microbial synthesis / Butyl butyrate biosynthesis / Metabolic engineering / Cognate consortium

Cite this article

Download citation ▾
Jean Paul Sinumvayo, Yin Li, Yanping Zhang. Microbial production of butyl butyrate: from single strain to cognate consortium. Bioresources and Bioprocessing, 2021, 8(1): 50 DOI:10.1186/s40643-021-00403-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abbas H, Comeau L. Aroma synthesis by immobilized lipase from Mucor sp. Enzyme Microb Technol, 2003, 32(5): 589-595.

[2]

Alonso-Gutierrez J, Chan R, Batth TS, Adams PD, Keasling JD, Petzold CJ, Lee TS. Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab Eng, 2013, 19: 3-41.

[3]

Baek J-M, Mazumdar S, Lee S-W, Jung M-Y, Lim J-H, Seo S-W, Jung G-Y, Oh M-K. Butyrate production in engineered Escherichia coli with synthetic scaffolds. Biotechnol Bioeng, 2013, 110: 2790-2794.

[4]

Balbontin C, Gaete-Eastman C, Fuentes L, Figueroa CR, Herrera R, Manriquez D, Latch A, Pech JC, Moya-Leon MA. VpAAT1, a gene encoding an alcohol acyltransferase, is involved in ester biosynthesis during ripening of mountain papaya fruit. J Agric Food Chem, 2010, 58: 5114-5121.

[5]

Beekwilder J, Alvarez-Huerta M, Neef E, Verstappen FWA, Bouwmeester HJ, Aharoni A. Functional characterization of enzymes forming volatile esters from strawberry and banana. Plant Physiol, 2004, 135: 1865-1878.

[6]

Bill RM. Playing catch-up with Escherichia coli: using yeast to increase success rates in recombinant protein production experiments. Front Microbiol, 2014, 5: 85.

[7]

Brault G, Shareck F, Hurtubise Y, Lepine F, Doucet N. Short-chain flavor ester synthesis in organic media by an E. coli whole-cell biocatalyst expressing a newly characterized heterologous lipase. PLoS ONE, 2014, 9: e91872.

[8]

Chacon MG, Kendrick EG, Leak DJ. Engineering Escherichia coli for the production of butyl octanoate from endogenous octanoyl-CoA. Peer J, 2019, 7: e6971. eCollection 2019

[9]

Contesini FJ, Davanço MG, Borin GP, Vanegas KG, Cirino JPG, de Melo RR, Mortensen UH, Hildén CDR, Carvalho PO. Advances in recombinant lipases: production, engineering, immobilization and application in the pharmaceutical industry. Catalysts, 2020, 10: 1032.

[10]

Cui Y, He J, Yang KL, Zhou K. Production of isopropyl and butyl esters by Clostridium mono-culture and co-culture. J Ind Microbiol Biotechnol, 2020, 47: 543-550.

[11]

Cumplido-Laso G, Medina-Puche L, Moyano E, Hoffmann T, Sinz Q, Ring L, Studart-Wittkowski C, Caballero JL, Schwab W, Munoz-Blanco J, Blanco-Portales R. The fruit ripening-related gene FaAAT2 encodes an acyl transferase involved in strawberry aroma biogenesis. J Exp Bot, 2012, 63: 4275-4290. Epub 2012 May 4

[12]

Defilippi BG, Kader AA, Dandekar AM. Apple aroma: alcohol acyltransferase, a rate limiting step for ester biosynthesis, is regulated by ethylene. Plant Sci, 2005, 168: 1199-1210.

[13]

Devi NA, Radhika GB, Bhargavi RJ. Lipase catalyzed transesterification of ethyl butyrate synthesis in n-hexane- a kinetic study. J Food Sci Technol, 2017, 54: 2871-2877.

[14]

Dong H, Zhao C, Zhang T, Zhu H, Lin Z, Tao W, Zhang Y, Li Y. A systematically chromosomally engineered Escherichia coli efficiently produces butanol. Metab Eng, 2017, 44: 284-292.

[15]

El-Sharkawy I, Manriquez D, Flores FB, Regad F, Bouzayen M, Latche A, Pech JC. Functional characterization of a melon alcohol acyl-transferase gene family involved in the biosynthesis of ester volatiles. Identification of the crucial role of a threonine residue for enzyme activity*. Plant Mol Biol, 2005, 59: 345-362.

[16]

Fellman JK, Miller TW, Mattinson DS, Mattheis JP. Factors that influence biosynthesis of volatile flavor compounds in apple fruits. HortScience, 2000, 35: 1026-1033.

[17]

Gao Q, Cao X, Huang YY, Yang JL, Chen J, Wei LJ, Hua Q. Overproduction of fatty acid ethyl esters by the oleaginous yeast Yarrowia lipolytica through metabolic engineering and process optimization. ACS Synth Biol, 2018, 7: 1371-1380.

[18]

Gunther CS, Chervin C, Marsh KB, Newcomb RD, Souleyre EJF. Characterisation of two alcohol acyltransferases from kiwifruit (Actinidia spp.) reveals distinct substrate preferences. Phytochemistry, 2011, 72: 700-710.

[19]

Horton CE, Bennett GN. Ester production in E. coli and C. acetobutylicum. Enzyme Microb Technol, 2006, 38: 937-943.

[20]

Iwasaki TM, Ohshima T, Mashima K. Kirk-othmer encyclopedia of chemical technology, 2012, New Jersey: Wiley, 497-516.

[21]

Kruis AJ, Levisson M, Mars AE, van der Ploeg M, Daza FG, Ellena V, Kengen SWM, van der Oost J, Weusthuis RA. Ethyl acetate production by the elusive alcohol acetyltransferase from yeast. Metab Eng, 2017, 41: 92-101.

[22]

Kruis AJ, Gallone B, Jonker T, Mars AE, van Rijswijck IH, Wolkers-Rooijackers JCM, Smid EJ, Steensels J, Verstrepen KJ, Kengen SWM, van der Oost J, Weusthuis RA. Contribution of Eat1 and other alcohol acyltransferases to ester production in Saccharomyces cerevisiae. Front Microbiol, 2018, 9: 3202.

[23]

Kruis AJ, Bohnenkamp AC, Patinios C, van Nuland YM, Levisson M, Mars AE, van den Berg C, Kengen SWM, Weusthuis RA. Microbial production of short and medium chain esters: Enzymes, pathways, and applications. Biotechnol Adv, 2019, 37: 107407.

[24]

Layton DS, Trinh CT. Engineering modular ester fermentative pathways in Escherichia coli. Metab Eng, 2014, 26: 77-88.

[25]

Layton DS, Trinh CT. Expanding the modular ester fermentative pathways for combinatorial biosynthesis of esters from volatile organic acids. Biotechnol Bioeng, 2016, 9999: 1-13.

[26]

Layton DS, Trinh CT. Microbial synthesis of a branched-chain ester platform from organic waste carboxylates. Metab Eng Commun, 2016, 3: 245-251.

[27]

Liu Y, Lotero E, Goodwin JG. Effect of water on sulfuric acid catalyzed esterification. J Mol Catal A Chem, 2006, 245(1–2): 132-140.

[28]

Longo MA, Sanromán MA (2006) Production of food aroma compounds: microbial and enzymatic methodologies.Food Technol Biotechnol 44(3):335–353

[29]

Lorenzoni ASG, Graebin NG, Martins AB, Lafuente RF, Ayub MAZ, Rodriguez RC. Optimization of pineapple flavour synthesis by esterification catalysed by immobilized lipase from Rhizomucor miehei. Flavour Fragr J, 2012, 27(2): 196-200.

[30]

Martins AB, Schein MF, Friedrich JLR, Lafuente RF, Ayub MAZ, Rodriguez RC. Ultrasound-assisted butyl acetate synthesis catalyzed by Novozym 435: enhanced activity and operational stability. Ultrason Sonochem, 2013, 20(5): 1155-1160.

[31]

Menendez-Bravo S, Comba S, Gramajo H, Arabolaza A. Metabolic engineering of microorganisms for the production of structurally diverse esters. Appl Microbiol Biotechnol, 2017, 101: 3043-3053.

[32]

Michael K, Hatfield SGS. The metabolism of alcohols by apple fruit tissue. J Sci Food Agric, 1981, 32: 593-600.

[33]

Miguel ED, David RS, Gustavo GA. Guadalupe IO (2016) Biochemistry of apple aroma: a review. Food TechnolBiotechnol, 2016, 54(4): 375-394.

[34]

Nancolas B, Bull ID, Stenner R, Dufour V, Curnow P. Saccharomyces cerevisiae Atf1p is an alcohol acetyltransferase and a thioesterase in vitro. Yeast, 2017, 34: 239-251.

[35]

Nelson D, Cox M (eds) (2008) Lehninger principles of biochemistry. Sara Tenney, New York

[36]

Noh HJ, Woo JE, Lee SY, Jang YS. Metabolic engineering of Clostridium acetobutylicum for the production of butyl butyrate. Appl Microbiol Biotechnol, 2018, 102: 8319-8327.

[37]

Pinheiro ES, Silva IM, Gonzaga LV, Edna RA, Reinaldo FT, Márcia MCF, Renata DMCA (2008) Optimization ofextraction of high-ester pectin from passion fruit peel (Passiflora edulis flavicarpa) with citric acid by using responsesurface methodology. Bioresour Technol 99(13):5561–5566

[38]

Pontrelli S, Chiu T-Y, Lan EI, Chen FYH, Chang P, Liao JC. Escherichia coli as a host for metabolic engineering. Metab Eng, 2018, 50: 16-46.

[39]

Rhodri WJ, Martin M, Sarah N, Christopher JC. Potential renewable oxygenated biofuels for the aviation and road transport sectors. Fuel, 2013, 103: 593-599.

[40]

Rodriguez GM, Tashiro Y, Atsumi S. Expanding ester biosynthesis in Escherichia coli. Nat Chem Biol, 2014, 10: 259-265.

[41]

Saerens SMG, Delvaux FR, Verstrepen KJ, Thevelein JM. Production and biological function of volatile esters in Saccharomyces cerevisiae. Microb Biotechnol, 2010, 3: 165-177.

[42]

Santos JC, de Castro HF. Optimization of lipase-catalysed synthesis of butyl butyrate using a factorial design. World J Microbiol Biotechnol, 2006, 22(10): 1007-1011.

[43]

Santos JC, Nunes GFM, Moreira ABR, Perez VH, de Castro HF. Characterization of Candida rugosa lipase immobilized on Poly(N-methylolacrylamide) and its application in butyl butyrate synthesis. Chem Eng Technol, 2007, 30: 1255-1261.

[44]

Seo H, Lee J-W, Giannone R, Dunlap, NJ, Trinh CT (2020) Repurposing chloramphenicol acetyltransferase for a robust and efficient designer ester biosynthesis platform. bioRxiv. https://doi.org/10.1101/2020.11.04.368696.

[45]

Seo SO, Wang Y, Lu T, Jin YS, Blaschek HP. Characterization of a Clostridium beijerinckii spo0A mutant and its application for butyl butyrate production. Biotechnol Bioeng, 2017, 114: 106-112.

[46]

Sinumvayo JP, Zhao C, Liu G, Li Y, Zhang Y. One-pot production of butyl butyrate from glucose using a cognate “diamond-shaped” E. coli consortium. Bioresour Bioprocess, 2021, 8: 18.

[47]

Van den Berg C, Heeres AS, Van der Wielen LA, Straathof AJ. Simultaneous Clostridial fermentation, lipase-catalyzed esterification, and ester extraction to enrich diesel with butyl butyrate. Biotechnol Bioeng, 2013, 110: 137.

[48]

Vandamme EJ, Soetaert W. Bioflavours and fragrances via fermentation and biocatalysis. J Chem Technol Biotechnol, 2002, 77(12): 1323-1332.

[49]

Williams AA, Knee M. Flavor of coxs orange pippin apples and its variation with storage. Ann Appl Biol, 1977, 87: 127-131.

[50]

Xin F, Basu A, Yang KL, He J. Strategies for production of butanol and butyl-butyrate through lipase-catalyzed esterification. Bioresour Technol, 2016, 202: 214-219.

[51]

Xin F, Dong W, Jiang Y, Ma J, Zhang W, Wu H, Zhang M, Jiang M. Recent advances on conversion and co-production of acetone-butanol-ethanol into high value-added bioproducts. Crit Rev Biotechnol, 2018, 38: 529-540.

[52]

Xin F, Zhang W, Jiang M. Bioprocessing butanol into more valuable butyl butyrate. Trends Biotechnol, 2019, 37: 923-926.

[53]

Yu A, Zhao Y, Li J, Li S, Pang Y, Zhao Y, Zhang C, Xiao D. Sustainable production of FAEE biodiesel using the oleaginous yeast Yarrowia lipolytica. Microbiologyopen, 2020, 9: e1051.

[54]

Zhang ZT, Taylor S, Wang Y. In situ esterification and extractive fermentation for butyl butyrate production with Clostridium tyrobutyricum. Biotechnol Bioeng, 2017, 114: 1428-1437.

[55]

Zhao C, Sinumvayo JP, Zhang Y, Li Y. Design and development of a "Y-shaped" microbial consortium capable of simultaneously utilizing biomass sugars for efficient production of butanol. Metab Eng, 2019, 55: 111-119.

AI Summary AI Mindmap
PDF

161

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/