Microbial production of butyl butyrate: from single strain to cognate consortium
Jean Paul Sinumvayo , Yin Li , Yanping Zhang
Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 50
Microbial production of butyl butyrate: from single strain to cognate consortium
Butyl butyrate (BB) is an important chemical with versatile applications in beverage, food and cosmetics industries. Since chemical synthesis of BB may cause adverse impacts on the environment, biotechnology is an emerging alternative approach for microbial esters biosynthesis. BB can be synthesized by using a single Clostridium strain natively producing butanol or butyrate, with exogenously supplemented butyrate or butanol, in the presence of lipase. Recently, E. coli strains have been engineered to produce BB, but the titer and yield remained very low. This review highlighted a new trend of developing cognate microbial consortium for BB production and associated challenges, and end up with new prospects for further improvement for microbial BB biosynthesis.
Microbial synthesis / Butyl butyrate biosynthesis / Metabolic engineering / Cognate consortium
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
Longo MA, Sanromán MA (2006) Production of food aroma compounds: microbial and enzymatic methodologies.Food Technol Biotechnol 44(3):335–353 |
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
Nelson D, Cox M (eds) (2008) Lehninger principles of biochemistry. Sara Tenney, New York |
| [36] |
|
| [37] |
Pinheiro ES, Silva IM, Gonzaga LV, Edna RA, Reinaldo FT, Márcia MCF, Renata DMCA (2008) Optimization ofextraction of high-ester pectin from passion fruit peel (Passiflora edulis flavicarpa) with citric acid by using responsesurface methodology. Bioresour Technol 99(13):5561–5566 |
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
Seo H, Lee J-W, Giannone R, Dunlap, NJ, Trinh CT (2020) Repurposing chloramphenicol acetyltransferase for a robust and efficient designer ester biosynthesis platform. bioRxiv. https://doi.org/10.1101/2020.11.04.368696. |
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
/
| 〈 |
|
〉 |