Impairing photorespiration increases photosynthetic conversion of CO2 to isoprene in engineered cyanobacteria

Jie Zhou , Fan Yang , Fuliang Zhang , Hengkai Meng , Yanping Zhang , Yin Li

Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 42

PDF
Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 42 DOI: 10.1186/s40643-021-00398-y
Research

Impairing photorespiration increases photosynthetic conversion of CO2 to isoprene in engineered cyanobacteria

Author information +
History +
PDF

Abstract

Photorespiration consumes fixed carbon and energy generated from photosynthesis to recycle glycolate and dissipate excess energy. The aim of this study was to investigate whether we can use the energy that is otherwise consumed by photorespiration to improve the production of chemicals which requires energy input. To this end, we designed and introduced an isoprene synthetic pathway, which requires ATP and NADPH input, into the cyanobacterium Synechocystis sp. 6803. We then deleted the glcD1 and glcD2 genes which encode glycolate dehydrogenase to impair photorespiration in isoprene-producing strain of Synechocystis. Production of isoprene in glcD1/glcD2 disrupted strain doubled, and stoichiometric analysis indicated that the energy saved from the impaired photorespiration was redirected to increase production of isoprene. Thus, we demonstrate we can use the energy consumed by photorespiration of cyanobacteria to increase the energy-dependent production of chemicals from CO2.

Keywords

Impairing photorespiration / Photosynthetic conversion of CO2 / Isoprene production / Glycolate dehydrogenase / Cyanobacteria

Cite this article

Download citation ▾
Jie Zhou, Fan Yang, Fuliang Zhang, Hengkai Meng, Yanping Zhang, Yin Li. Impairing photorespiration increases photosynthetic conversion of CO2 to isoprene in engineered cyanobacteria. Bioresources and Bioprocessing, 2021, 8(1): 42 DOI:10.1186/s40643-021-00398-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ajikumar PK, Xiao W-H, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science, 2010, 330(6000): 70-74.

[2]

Bauwe H, Hagemann M, Fernie AR. Photorespiration: players, partners and origin. Trends Plant Sci, 2010, 15(6): 330-336.

[3]

Bentley FK, Melis A. Diffusion-based process for carbon dioxide uptake and isoprene emission in gaseous/aqueous two-phase photobioreactors by photosynthetic microorganisms. Biotechnol Bioeng, 2012, 109(1): 100-109.

[4]

Bloom AJ. Photorespiration and nitrate assimilation: a major intersection between plant carbon and nitrogen. Photosynth Res, 2015, 123(2): 117-128.

[5]

Cai Z, Liu G, Zhang J, Li Y. Development of an activity-directed selection system enabled significant improvement of the carboxylation efficiency of Rubisco. Protein Cell, 2014, 5(7): 552-562.

[6]

Chaves JE, Romero PR, Kirst H, Melis A. Role of isopentenyl-diphosphate isomerase in heterologous cyanobacterial (Synechocystis) isoprene production. Photosynth Res, 2016, 130(1): 517-527.

[7]

Colman B. Photosynthetic carbon assimilation and the suppression of photorespiration in the cyanobacteria. Aquat Bot, 1989, 34: 211-231.

[8]

Dyo YM, Purton S. The algal chloroplast as a synthetic biology platform for production of therapeutic proteins. Microbiology, 2018, 164(2): 113-121.

[9]

Eisenhut M, Kahlon S, Hasse D, Ewald R, Lieman-Hurwitz J, Ogawa T, Ruth W, Bauwe H, Kaplan A, Hagemann M. The plant-like C2 glycolate cycle and the bacterial-like glycerate pathway cooperate in phosphoglycolate metabolism in cyanobacteria. Plant Physiol, 2006, 142: 333-342.

[10]

Eisenhut M, Roell M-S, Weber APM. Mechanistic understanding of photorespiration paves the way to a new green revolution. New Phytol, 2019

[11]

Eisenhut M, Ruth W, Haimovich M, Bauwe H, Kaplan A, Hagemann M. The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. Proc Natl Acad Sci USA, 2008, 105(44): 17199-17204.

[12]

Engel N, van den Daele K, Kolukisaoglu Ü, Morgenthal K, Weckwerth W, Pärnik T, Keerberg O, Bauwe H. Deletion of glycine decarboxylase in Arabidopsis is lethal under nonphotorespiratory conditions. Plant Physiol, 2007, 144(3): 1328-1335.

[13]

Fernie AR, Bauwe H. Wasteful, essential, evolutionary stepping stone? The multiple personalities of the photorespiratory pathway. Plant J, 2020

[14]

Gao X, Gao F, Liu D, Zhang H, Nie X, Yang C. Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO2. Energy Environ Sci, 2016, 9: 1400-1411.

[15]

Hagemann M, Bauwe H. Photorespiration and the potential to improve photosynthesis. Curr Opin Chem Biol, 2016, 35: 109-116.

[16]

Hess JL, Tolbert NE. Glycolate pathway in algae. Plant Physiol, 1967, 42(3): 371-379.

[17]

Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch H-J, Rosenkranz R, Stabler N, Schonfeld B, Kreuzaler F, Peterhansel C. Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol, 2007, 25(5): 593-599.

[18]

Klughammer C, Schreiber U. Saturation pulse method for assessment of energy conversion in PS I. PAM Appl Notes, 2008, 1: 11-14.

[19]

Kozaki A, Takeba G. Photorespiration protects C3 plants from photooxidation. Nature, 1996, 384(6609): 557-560.

[20]

Lindberg P, Park S, Melis A. Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng, 2010, 12(1): 70-79.

[21]

Lindberg P, Park S, Melis A. Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng, 2010, 12: 70-79.

[22]

Norman EG, Colman B. Evidence for an incomplete glycolate pathway in cyanobacteria. J Plant Physiol, 1988, 132(6): 766-768.

[23]

Shih PM, Zarzycki J, Niyogi KK, Kerfeld CA. Introduction of a synthetic CO2-fixing photorespiratory bypass into a cyanobacterium. J Biol Chem, 2014, 289(14): 9493-9500.

[24]

South PF, Cavanagh AP, Liu HW, Ort DR. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science, 2019, 363(6422): eaat9077.

[25]

Tolbert NE. The C2 oxiditave photosynthetic carbon cycle. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48(1): 1-25.

[26]

Zhou J, Zhang F, Meng H, Zhang Y, Li Y. Introducing extra NADPH consumption ability significantly increases the photosynthetic efficiency and biomass production of cyanobacteria. Metab Eng, 2016, 38: 217-227.

[27]

Zhou J, Zhang H, Meng H, Zhu Y, Bao G, Zhang Y, Li Y, Ma Y. Discovery of a super-strong promoter enables efficient production of heterologous proteins in cyanobacteria. Sci Rep, 2014, 4: 4500.

[28]

Zhou J, Zhang H, Zhang Y, Li Y, Ma Y. Designing and creating a modularized synthetic pathway in cyanobacterium Synechocystis enables production of acetone from carbon dioxide. Metab Eng, 2012, 14(4): 394-400.

Funding

National Natural Science Foundation of China(31670048)

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/