Economic and environmental assessment of bacterial poly(3-hydroxybutyrate) production from the organic fraction of municipal solid waste

Jon Kepa Izaguirre , Leire Barañano , Sonia Castañón , José A. L. Santos , M. Teresa Cesário , M. Manuela R. da Fonseca , Itziar Alkorta , Carlos Garbisu

Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 39

PDF
Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 39 DOI: 10.1186/s40643-021-00392-4
Research

Economic and environmental assessment of bacterial poly(3-hydroxybutyrate) production from the organic fraction of municipal solid waste

Author information +
History +
PDF

Abstract

The management of municipal solid waste is a major logistic and environmental problem worldwide. Nonetheless, the organic fraction of municipal solid waste (OFMSW) is a valuable source of nutrients which can be used for a variety of purposes, according to the Circular Economy paradigm. Among the possible applications, the bioproduction of a biodegradable polyester, poly(3-hydroxybutyrate) [P(3HB)], using OFMSW as carbon platform is a promising strategy. Here, an economic and environmental assessment of bacterial P(3HB) production from OFMSW is presented based on previously published results. The SuperPro Designer® software was used to simulate P(3HB) production under our experimental parameters. Two scenarios were proposed depending on the fermentation medium: (1) enzymatic hydrolysate of OFMSW supplemented with glucose and plum waste juice; and (2) basal medium supplemented with glucose and plum waste juice. According to our results, both scenarios are not economically feasible under our experimental parameters. In Scenario 1, the low fermentation yield, the cost of the enzymes, the labour cost and the energy consumption are the factors that most contribute to that result. In Scenario 2, the cost of the extraction solvent and the low fermentation yield are the most limiting factors. The possibility of using process waste as raw material for the generation of other products must be investigated to enhance economic feasibility. From an environmental viewpoint, the photochemical oxidation potential (derived from the use of anisole as extraction solvent) and the generation of acid rain and global warming effect (caused by the burning of fuels for power generation) are the most relevant impacts associated to P(3HB) production under our experimental parameters.

Keywords

Bioeconomy / Bioplastics / Burkholderia sacchari / Circular economy / Polyhydroxyalkanoate production

Cite this article

Download citation ▾
Jon Kepa Izaguirre, Leire Barañano, Sonia Castañón, José A. L. Santos, M. Teresa Cesário, M. Manuela R. da Fonseca, Itziar Alkorta, Carlos Garbisu. Economic and environmental assessment of bacterial poly(3-hydroxybutyrate) production from the organic fraction of municipal solid waste. Bioresources and Bioprocessing, 2021, 8(1): 39 DOI:10.1186/s40643-021-00392-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abad V, Avila R, Vicent T, Font X. Promoting circular economy in the surroundings of an organic fraction of municipal solid waste anaerobic digestion treatment plant: Biogas production impact and economic factors. Bioresour Technol, 2019, 283: 10-17.

[2]

Abe H, Doi Y (2001) Bacterial polyesters. In: Buschow KHJ, Cahn RW, Flemings MC, IIschner B, Kramer EJ, Mahajan S (eds). Encyclopedia of Materials: Science and Technology, 2nd edn, pp 448–453. Elsevier

[3]

Al-Battashi H, Annamalai N, Al-Kindi S, Nair AS, Al-Bahry S, Verma JP, Sivakumar N. Production of bioplastic (poly-3-hydroxybutyrate) using waste paper as a feedstock: Optimization of enzymatic hydrolysis and fermentation employing Burkholderia sacchari. J Clean Prod, 2019, 214: 236-247.

[4]

Alkorta I, Garbisu C, Llama MJ, Serra JL. Immobilization of pectin lyase from Penicillium italicum by covalent binding to nylon. Enzyme Microbial Technol, 1996, 18: 141-146.

[5]

Alkorta I, Garbisu C, Llama MJ, Serra JL. Industrial applications of pectic enzymes: a review. Process Biochem, 1998, 33: 21-28.

[6]

Amit K, Nakachew M, Yilkal B, Mukesh Y. A review of factors affecting enzymatic hydrolysis of pretreated lignocellulosic biomass. Res J Chem Environ, 2018, 22: 62-67.

[7]

Barampouti EM, Mai S, Malamis D, Moustakas K, Loizidou M. Liquid biofuels from the organic fraction of municipal solid waste: a review. Renew Sustain Energy Rev, 2019, 110: 298-314.

[8]

Battista F, Frison N, Pavan P, Cavinato C, Gottardo M, Fatone F, Eusebi AL, Majone M, Zeppilli M, Valentino F, Fino D, Bolzonella D, Bassham CB. Food wastes and sewage sludge as feedstock for an urban biorefinery producing biofuels and added-value bioproducts. J Chem Technol Biotechnol, 2020, 95: 328-338.

[9]

Bello-Gil D, Roig-Molina E, Fonseca J, Sarmiento-Ferrández MD, Ferrándiz M, Franco E, Mira E, Maestro B, Sanz JM. An enzymatic system for decolorization of wastewater dyes using immobilized CueO laccase-like multicopper oxidase on poly-3-hydroxybutyrate. Microb Biotechnol, 2018, 11: 881-892.

[10]

Braguglia CM, Gallipoli A, Gianico A, Pagliaccia P. Anaerobic bioconversion of food waste into energy: a critical review. Bioresour Technol, 2018, 248: 37-56.

[11]

Cesário MT, Raposo RS, de Almeida MCMD, van Keulen F, Ferreira BS, da Fonseca MMR. Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysates. New Biotechnol, 2014, 31: 104-113.

[12]

Choi MJ. Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Appl Microbiol Biotechnol, 1999, 51: 13-21.

[13]

da Cruz Pradella JG, Taciro MK, Mateus AYP. High-cell-density poly (3-hydroxybutyrate) production from sucrose using Burkholderia sacchari culture in airlift bioreactor. Bioresour Technol, 2010, 101: 8355-8360.

[14]

de Paula FC, de Paula CBC, Gomez JGC, Steinbüchel A, Contiero J. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from biodiesel by-product and propionic acid by mutant strains of Pandoraea sp. Biotechnol Prog, 2017, 33: 1077-1084.

[15]

Demichelis F, Pleissner D, Fiore S, Mariano S, Navarro Gutiérrez IM, Schneider R, Venus J. Investigation of food waste valorization through sequential lactic acid fermentative production and anaerobic digestion of fermentation residues. Bioresour Technol, 2017, 241: 508-516.

[16]

Dietrich K, Dumont MJ, Del Rio LF, Orsat V. Producing PHAs in the bioeconomy—towards a sustainable bioplastic. Sustain Prod Consum, 2017, 9: 58-70.

[17]

DiGregorio BE. Biobased performance bioplastic: Mirel. Chem Biol, 2009, 16: 1-2.

[18]

Esteban J, Ladero M. Invited review Food waste as a source of value-added chemicals and materials: a biorefinery perspective. Int J Food Sci Technol, 2018, 53: 1095-1108.

[19]

Gahlawat G, Srivastava AK. Development of a mathematical model for the growth associated Polyhydroxybutyrate fermentation by Azohydromonas australica and its use for the design of fed-batch cultivation strategies. Bioresour Technol, 2013, 137: 98-105.

[20]

Ghanavati H, Nahvi I, Karimi K. Organic fraction of municipal solid waste as a suitable feedstock for the production of lipid by oleaginous yeast Cryptococcus aerius. Waste Manag, 2015, 38: 141-148.

[21]

Izaguirre JK, da Fonseca MMR, Fernandes P, Villarán MC, Castañón S, Cesário MT. Upgrading the organic fraction of municipal solid waste to poly(3-hydroxybutyrate). Bioresour Technol, 2019, 290: 121785.

[22]

Izaguirre JK, da Fonseca MMR, Castañón S, Villarán MC, Cesário MT. Giving credit to residual bioresources: from municipal solid waste hydrolysate and waste plum juice to poly (3-hydroxybutyrate). Waste Manag, 2020, 118: 534-540.

[23]

Kabir MM. Can bio-plastics replace non-biodegradable plastics. J Appl Biotechnol Bioeng, 2017, 3: 381-383.

[24]

Kwan TH, Pleissner D, Lau KY, Venus J, Pommeret A, Lin CSK. Techno-economic analysis of a food waste valorization process via microalgae cultivation and co-production of plasticizer, lactic acid and animal feed from algal biomass and food waste. Bioresour Technol, 2015, 198: 292-299.

[25]

Leong YK, Show PL, Lan JCW, Loh HS, Lam HL, Ling TC. Economic and environmental analysis of PHAs production process. Clean Technol Environ Policy, 2017, 19: 1941-1953.

[26]

López-Gómez JP, Latorre-Sánchez M, Unger P, Schneider R, Coll Lozano C, Venus J. Assessing the organic fraction of municipal solid wastes for the production of lactic acid. Biochem Eng J, 2019, 150: 107251.

[27]

Możejko-Ciesielska J, Kiewisz R. Bacterial polyhydroxyalkanoates: still fabulous?. Microbiol Res, 2016, 192: 271-282.

[28]

Mudliar SN, Vaidya AN, Suresh Kumar M, Dahikar S, Chakrabarti T. Techno-economic evaluation of PHB production from activated sludge. Clean Technol Environ Policy, 2008, 10: 255-262.

[29]

Obruca S, Benesova P, Marsalek L, Marova I. Use of lignocellulosic materials for PHA production. Chem Biochem Eng Quaterly, 2015, 29: 135-144.

[30]

Olaya-Abril A, Luque-Almagro VM, Manso I, Gates AJ, Moreno-Vivián C, Richardson DJ, Roldán MD. Poly(3-hydroxybutyrate) hyperproduction by a global nitrogen regulator NtrB mutant strain of Paracoccus denitrificans PD1222. FEMS Microbiol Lett, 2017, 365: fnx251.

[31]

Petrides D (2015) Bioprocess design and economics. In: Harrison RG, Todd PW, Rudge SR, Petrides D eds. Bioseparations Science and Engineering, 2nd edn. Oxford University Press, Chapter 11, ISBN 978-0-19-539181-7

[32]

Qin Y, Wang H, Li X, Cheng JJ, Wu W. Improving methane yield from organic fraction of municipal solid waste (OFMSW) with magnetic rice-straw biochar. Bioresour Technol, 2017, 245: 1058-1066.

[33]

Ramos FD, Delpino CA, Villar MA, Diaz MS. Design and optimization of poly(hydroxyalkanoate)s production plants using alternative substrates. Bioresour Technol, 2019, 289: 121699.

[34]

Raposo RS, de Almeida MC, de Oliveira MD, da Fonseca MM, Cesário MT. A Burkholderia sacchari cell factory: production of poly-3-hydroxybutyrate, xylitol and xylonic acid from xylose-rich sugar mixtures. New Biotechnol., 2017, 34: 12-22.

[35]

Rodriguez-Perez S, Serrano A, Pantión AA, Alonso-Fariñas B. Challenges of scaling-up PHA production from waste streams. A review. J Environ Manage, 2018, 205: 215-230.

[36]

Rosengart A, Cesário MT, de Almeida MCMD, Raposo RS, Espert A, de Apodaca ED, da Fonseca MMR. Efficient P(3HB) extraction from Burkholderia sacchari cells using non-chlorinated solvents. Biochem Eng J, 2015, 103: 39-46.

[37]

Rujnić-Sokele M, Pilipović A. Challenges and opportunities of biodegradable plastics: a mini review. Waste Manag Res, 2017, 35: 132-140.

[38]

Shahzad K, Kettl KH, Titz M, Koller M, Schnitzer H, Narodoslawsky M. Comparison of ecological footprint for biobased PHA production from animal residues utilizing different energy resources. Clean Technol Environ Policy, 2013, 15: 525-536.

[39]

Stegman P, Londo M, Junginger M (2020) The circular bioeconomy: Its elements and role in European bioeconomy clusters. Resources Conservation Recycling X 6, 100029

[40]

Stavroula K, Simos M, Katherine-Joanne H. Polyhydroxyalkanoates (PHAs) from household food waste: Research over the last decade. Int J Biotechnol Bioeng, 2020, 6: 26-36.

[41]

Van Dael M, Kuppens T, Lizin S, Van Passel S. Fang Z, Smith RL, Qi X. Techno-economic assessment methodology for ultrasonic production of biofuels. Production of biofuels and chemicals with ultrasound, 2015 Springer, 317-345.

[42]

Vandi L, Chan CM, Werker A, Richardson D, Laycock B, Pratt S. Wood–PHA composites: mapping opportunities. Polymers, 2018, 10(7): 751.

[43]

Xie CH, Yokota A. Reclassification of Alcaligenes latus strains IAM 12599T and IAM 12664 and Pseudomonas saccharophila as Azohydromonas lata gen. nov. comb. nov., Azohydromonas australica sp. nov. and Pelomonas saccharophila gen. nov., comb. nov., respectively. Int J Syst Evol Microbiol, 2005, 55: 2419-2425.

Funding

Eusko Jaurlaritza(PhD Fellowship)

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/