PDF
Abstract
Extensive decoration of backbones is a major factor resulting in resistance of enzymatic conversion in hemicellulose and other branched polysaccharides. Employing debranching enzymes is the main strategy to overcome this kind of recalcitrance at present. A carbohydrate-binding module (CBM) is a contiguous amino acid sequence that can promote the binding of enzymes to various carbohydrates, thereby facilitating enzymatic hydrolysis. According to previous studies, CBMs can be classified into four types based on their preference in ligand type, where Type III and IV CBMs prefer to branched polysaccharides than the linear and thus are able to specifically enhance the hydrolysis of substrates containing side chains. With a role in dominating the hydrolysis of branched substrates, Type III and IV CBMs could represent a non-catalytic approach in overcoming side-chain recalcitrance.
Keywords
Carbohydrate-binding module
/
Protein structure
/
Protein-carbohydrate recognition
/
CBM fusion
/
Hemicellulose
/
Side-chain recalcitrance
/
Lignocellulose conversion
Cite this article
Download citation ▾
Jiawen Liu, Di Sun, Jingrong Zhu, Cong Liu, Weijie Liu.
Carbohydrate-binding modules targeting branched polysaccharides: overcoming side-chain recalcitrance in a non-catalytic approach.
Bioresources and Bioprocessing, 2021, 8(1): 28 DOI:10.1186/s40643-021-00381-7
| [1] |
Alvarez C, Reyes-Sosa FM, Diez B. Enzymatic hydrolysis of biomass from wood. Microb Biotechnol, 2016, 9: 149-156.
|
| [2] |
Attia M, Stepper J, Davies GJ, Brumer H. Functional and structural characterization of a potent GH74 endo-xyloglucanase from the soil saprophyte Cellvibrio japonicus unravels the first step of xyloglucan degradation. FEBS J, 2016, 283: 1701-1719.
|
| [3] |
Bolam DN, Xie H, Pell G, Hogg D, Galbraith G, Henrissat B, Gilbert HJ. X4 modules represent a new family of carbohydrate-binding modules that display novel properties. J Biol Chem, 2004, 279: 22953-22963.
|
| [4] |
Boraston AB, Revett TJ, Boraston CM, Nurizzo D, Davies GJ. Structural and thermodynamic dissection of specific mannan recognition by a carbohydrate binding module, TmCBM27. Structure, 2003, 11: 665-675.
|
| [5] |
Boraston AB, Bolam DN, Gilbert HJ, Davies GJ. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J, 2004, 382: 769-781.
|
| [6] |
Chandel AK, Garlapati VK, Singh AK, Antunes FAF, da Silva SS. The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresour Technol, 2018, 264: 370-381.
|
| [7] |
Chen H, Liu J, Chang X, Chen D, Xue Y, Liu P, Lin H, Han S. A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process Technol, 2017, 160: 196-206.
|
| [8] |
Chen Z, Li S, Fu Y, Li C, Chen D, Chen H. Arabinoxylan structural characteristics, interaction with gut microbiota and potential health functions. J Funct Foods, 2019, 54: 536-551.
|
| [9] |
Correia MA, Abbott DW, Gloster TM, Fernandes VO, Prates JA, Montanier C, Dumon C, Williamson MP, Tunnicliffe RB, Liu Z, . Signature active site architectures illuminate the molecular basis for ligand specificity in family 35 carbohydrate binding module. Biochemistry, 2010, 49: 6193-6205.
|
| [10] |
Cuskin F, Flint JE, Gloster TM, Morland C, Basle A, Henrissat B, Coutinho PM, Strazzulli A, Solovyova AS, Davies GJ, . How nature can exploit nonspecific catalytic and carbohydrate binding modules to create enzymatic specificity. Proc Natl Acad Sci U S A, 2012, 109: 20889-20894.
|
| [11] |
Déjean G, Tauzin AS, Bennett SW, Creagh AL, Brumer H. Adaptation of syntenic xyloglucan utilization loci of human gut Bacteroidetes to polysaccharide side chain diversity. Appl Environ Microbiol, 2019, 85: e01491-e11419.
|
| [12] |
Fredriksen L, Stokke R, Jensen MS, Westereng B, Jameson JK, Steen AIH, . Discovery of a thermostable GH10 xylanase with broad substrate specificity from the arctic mid-ocean ridge vent system. Appl Environ Microbiol, 2019, 85: e02970-e12918.
|
| [13] |
Fujimoto Z, Kaneko S, Kuno A, Kobayashi H, Kusakabe I, Mizuno H. Crystal structures of decorated xylooligosaccharides bound to a family 10 xylanase from Streptomyces olivaceoviridis E-86. J Biol Chem, 2004, 279: 9606-9614.
|
| [14] |
Furtado GP, Lourenzoni MR, Fuzo CA, Fonseca-Maldonado R, Guazzaroni ME, Ribeiro LF, Ward RJ. Engineering the affinity of a family 11 carbohydrate binding module to improve binding of branched over unbranched polysaccharides. Int J Biol Macromol, 2018, 120: 2509-2516.
|
| [15] |
Gilbert HJ, Knox JP, Boraston AB. Advances in understanding the molecular basis of plant cell wall polysaccharide recognition by carbohydrate-binding modules. Curr Opin Struct Biol, 2013, 23: 669-677.
|
| [16] |
Hedin N, Barchiesi J, Gomez-Casati DF, Iglesias AA, Ballicora MA, Busi MV. Identification and characterization of a novel starch branching enzyme from the picoalgae Ostreococcus tauri. Arch Biochem Biophys, 2017, 618: 52-61.
|
| [17] |
Hernandez-Gomez MC, Rydahl MG, Rogowski A, Morland C, Cartmell A, Crouch L, . Recognition of xyloglucan by the crystalline cellulose-binding site of a family 3a carbohydrate-binding module. FEBS Lett, 2015, 589: 2297-2303.
|
| [18] |
Herve C, Rogowski A, Blake AW, Marcus SE, Gilbert HJ, Knox JP. Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects. Proc Natl Acad Sci U S A, 2010, 107: 15293-15298.
|
| [19] |
Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science, 2007, 315: 804.
|
| [20] |
Houfani AA, Anders N, Spiess AC, Baldrian P, Benallaoua S. Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars– a review. Biomass Bioenergy, 2020, 134: 105481.
|
| [21] |
Huang D, Liu J, Qi Y, Yang K, Xu Y, Feng L. Synergistic hydrolysis of xylan using novel xylanases, beta-xylosidases, and an alpha-L-arabinofuranosidase from Geobacillus thermodenitrificans NG80-2. Appl Microbiol Biotechnol, 2017, 101: 6023-6037.
|
| [22] |
Ichikawa S, Yoshida M, Karita S, Kondo M, Goto M. Carbohydrate-binding modules influence substrate specificity of an endoglucanase from Clostridium thermocellum. Biosci Biotechnol Biochem, 2016, 80: 188-192.
|
| [23] |
Karita S. Carbohydrate-binding modules in plant cell wall-degrading enzymes. Trends Glycosci Glycotechnol, 2016, 28: 49-53.
|
| [24] |
Kubicek CP, Kubicek EM. Enzymatic deconstruction of plant biomass by fungal enzymes. Curr Opin Chem Biol, 2016, 35: 51-57.
|
| [25] |
Labourel A, Crouch LI, Brás JLA, Jackson A, Rogowski A, Gray J, Yadav MP, Henrissat B, Fontes CMGA, Gilbert HJ, . The mechanism by which arabinoxylanases can recognize highly decorated xylans. J Biol Chem, 2016, 291: 22149-22159.
|
| [26] |
Levi Hevroni B, Moraïs S, Ben-David Y, Morag E, Bayer EA. Minimalistic cellulosome of the butanologenic bacterium Clostridium saccharoperbutylacetonicum. MBio, 2020, 11: e00443-e1420.
|
| [27] |
Liu T, He G, Lau AKH. Statistical evidence on the impact of agricultural straw burning on urban air quality in China. Sci Total Environ, 2020, 711: 134633.
|
| [28] |
Luis AS, Venditto I, Temple MJ, Rogowski A, Basle A, Xue J, Knox JP, Prates JAM, Ferreira LMA, Fontes CMGA, . Understanding how noncatalytic carbohydrate binding modules can display specificity for xyloglucan. J Biol Chem, 2013, 288: 4799-4809.
|
| [29] |
Ma L, Ma Q, Cai R, Zong Z, Du L, Guo G, . Effect of beta-mannanase domain from Trichoderma reesei on its biochemical characters and synergistic hydrolysis of sugarcane bagasse. J Sci Food Agric, 2018, 98: 2540-2547.
|
| [30] |
Maharjan A, Alkotaini B, Kim BS. Fusion of carbohydrate binding modules to bifunctional cellulase to enhance binding affinity and cellulolytic activity. Biotechnol Bioprocess Eng, 2018, 23: 79-85.
|
| [31] |
Matsuzawa T, Kameyama A, Yaoi K. Identification and characterization of alpha-xylosidase involved in xyloglucan degradation in Aspergillus oryzae. Appl Microbiol Biotechnol, 2020, 104: 201-210.
|
| [32] |
Meng DD, Ying Y, Chen XH, Lu M, Ning K, Wang LS, Li FL. Distinct roles for carbohydrate-binding modules of glycoside hydrolase 10 (GH10) and GH11 xylanases from Caldicellulosiruptor sp. strain F32 in thermostability and catalytic efficiency. Appl Environ Microbiol, 2015, 81: 2006-2014.
|
| [33] |
Miyanaga A, Koseki T, Miwa Y, Mese Y, Nakamura S, Kuno A, Hirabayashi J, Matsuzawa H, Wakagi T, Shoun H, . The family 42 carbohydrate-binding module of family 54 alpha-L-arabinofuranosidase specifically binds the arabinofuranose side chain of hemicellulose. Biochem J, 2006, 399: 503-511.
|
| [34] |
Mollerup F, Parikka K, Vuong TV, Tenkanen M, Master E. Influence of a family 29 carbohydrate binding module on the activity of galactose oxidase from Fusarium graminearum. Biochim Biophys Acta, Gen Subj, 2016, 1860: 354-362.
|
| [35] |
Montanier C, van Bueren AL, Dumon C, Flint JE, Correia MA, Prates JA, Firbank SJ, Lewis RJ, Grondin GG, Ghinet MG, . Evidence that family 35 carbohydrate binding modules display conserved specificity but divergent function. Proc Natl Acad Sci U S A, 2009, 106: 3065-3070.
|
| [36] |
Moreira LRS, Filho EXF. An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol, 2008, 79: 165-178.
|
| [37] |
Moreira LR, Filho EX. Insights into the mechanism of enzymatic hydrolysis of xylan. Appl Microbiol Biotechnol, 2016, 100: 5205-5214.
|
| [38] |
Morrill J, Kulcinskaja E, Sulewska AM, Lahtinen S, Stalbrand H, Svensson B, . The GH5 1,4-beta-mannanase from Bifidobacterium animalis subsp lactis Bl-04 possesses a low-affinity mannan-binding module and highlights the diversity of mannanolytic enzymes. BMC Biochem, 2015, 16: 26.
|
| [39] |
Naidu DS, Hlangothi SP, John MJ. Bio-based products from xylan: a review. Carbohydr Polym, 2018, 179: 28-41.
|
| [40] |
Najmudin S, Guerreiro CI, Carvalho AL, Prates JA, Correia MA, Alves VD, Ferreira LM, Romao MJ, Gilbert HJ, Bolam DN, . Xyloglucan is recognized by carbohydrate-binding modules that interact with beta-glucan chains. J Biol Chem, 2006, 281: 8815-8828.
|
| [41] |
Orita T, Sakka M, Kimura T, Sakka K. Recombinant cellulolytic or xylanolytic complex comprising the full-length scaffolding protein RjCipA and cellulase RjCe15B or xylanase RjXyn10C of Ruminiclostridium josui. Enzyme Microb Technol, 2017, 97: 63-70.
|
| [42] |
Pan R, Hu Y, Long L, Wang J, Ding S. Extra carbohydrate binding module contributes to the processivity and catalytic activity of a non-modular hydrolase family 5 endoglucanase from Fomitiporia mediterranea MF3/22. Enzyme Microb Technol, 2016, 91: 42-51.
|
| [43] |
Pires VMR, Pereira PMM, Bras JLA, Correia M, Cardoso V, Bule P, Alves VD, Najmudin S, Venditto I, Ferreira LMA, . Stability and ligand promiscuity of type a carbohydrate-binding modules are illustrated by the structure of Spirochaeta thermophila StCBM64C. J Biol Chem, 2017, 292: 4847-4860.
|
| [44] |
Rastogi M, Shrivastava S. Recent advances in second generation bioethanol production: an insight to pretreatment, saccharification and fermentation processes. Renew Sustain Energy Rev, 2017, 80: 330-340.
|
| [45] |
Rogowski A, Briggs JA, Mortimer JC, Tryfona T, Terrapon N, Lowe EC, Baslé A, Morland C, Day AM, Zheng H, . Glycan complexity dictates microbial resource allocation in the large intestine. Nat Commun, 2015, 6: 7481.
|
| [46] |
Sakka M, Kunitake E, Kimura T, Sakka K. Function of a laminin_G_3 module as a carbohydrate-binding module in an arabinofuranosidase from Ruminiclostridium josui. FEBS Lett, 2019, 593: 42-51.
|
| [47] |
Shabih F, Amir H, Muhammad N, Temoor A, Muhammad S, Mohsin T, Imran S, Romana T. Lignocellulosic biomass: a sustainable bioenergy source for the future. Protein Pept Lett, 2018, 25: 148-163.
|
| [48] |
Singh S, Singh G, Arya SK. Mannans: an overview of properties and application in food products. Int J Biol Macromol, 2018, 119: 79-95.
|
| [49] |
Skurat AV, Segvich DM, Depaoli-Roach AA, Roach PJ. Novel method for detection of glycogen in cells. Glycobiology, 2017, 27: 416-424.
|
| [50] |
Song Y, Sun W, Fan Y, Xue Y, Liu D, Ma C, Liu W, Mosher W, Luo X, Li Z, . Galactomannan degrading enzymes from the mannan utilization gene cluster of alkaliphilic Bacillus sp. N16–5 and their synergy on galactomannan degradation. J Agric Food Chem, 2018, 66: 11055-11063.
|
| [51] |
St John FJ, Rice JD, Preston JF. Characterization of XynC from Bacillus subtilis subsp subtilis strain 168 and analysis of its role in depolymerization of glucuronoxylan. J Bacteriol, 2006, 188: 8617-8626.
|
| [52] |
St John FJ, Hurlbert JC, Rice JD, Preston JF, Pozharski E. Ligand bound structures of a glycosyl hydrolase family 30 glucuronoxylan xylanohydrolase. J Mol Biol, 2011, 407: 92-109.
|
| [53] |
Taha M, Foda M, Shahsavari E, Aburto-Medina A, Adetutu E, Ball A. Commercial feasibility of lignocellulose biodegradation: possibilities and challenges. Curr Opin Biotechnol, 2016, 38: 190-197.
|
| [54] |
Takasuka TE, Acheson JF, Bianchetti CM, Prom BM, Bergeman LF, Book AJ, Currie CR, Fox BG. Biochemical properties and atomic resolution structure of a proteolytically processed beta-mannanase from cellulolytic Streptomyces sp. SirexAA-E. PLoS ONE, 2014, 9: e94166.
|
| [55] |
Tunnicliffe RB, Bolam DN, Pell G, Gilbert HJ, Williamson MP. Structure of a mannan-specific family 35 carbohydrate-binding module: evidence for significant conformational changes upon ligand binding. J Mol Biol, 2005, 347: 287-296.
|
| [56] |
Urbániková Ľ, Vršanská M, Mørkeberg Krogh KBR, Hoff T, Biely P. Structural basis for substrate recognition by Erwinia chrysanthemi GH30 glucuronoxylanase. FEBS J, 2011, 278: 2105-2116.
|
| [57] |
Valenzuela SV, Diaz P, Pastor FIJ. Modular glucuronoxylan-specific xylanase with a family CBM35 carbohydrate-binding module. Appl Environ Microbiol, 2012, 78: 3923-3931.
|
| [58] |
Venditto I, Najnnudin S, Luis AS, Ferreira LMA, Sakka K, Knox JP, . Family 46 carbohydrate-binding modules contribute to the enzymatic hydrolysis of xyloglucan and beta-1,3–1,4-glucans through distinct mechanisms. J Biol Chem, 2015, 290: 10572-10586.
|
| [59] |
Venditto I, Luis AS, Rydahl M, Schuckel J, Fernandes VO, Vidal-Melgosa S, Bule P, Goyal A, Pires VMR, Dourado CG, . Complexity of the Ruminococcus flavefaciens cellulosome reflects an expansion in glycan recognition. Proc Natl Acad Sci U S A, 2016, 113: 7136-7141.
|
| [60] |
Verma AK, Goyal A. A novel member of family 30 glycoside hydrolase subfamily 8 glucuronoxylan endo-beta-1:4-xylanase (CtXynGH30) from Clostridium thermocellum orchestrates catalysis on arabinose decorated xylans. J Mol Catal B Enzym, 2016, 129: 6-14.
|
| [61] |
von Schantz L, Hakansson M, Logan DT, Walse B, Osterlin J, Nordberg-Karlsson E, Ohlin M. Structural basis for carbohydrate-binding specificity—a comparative assessment of two engineered carbohydrate-binding modules. Glycobiology, 2012, 22: 948-961.
|
| [62] |
Walker JA, Takasuka TE, Deng K, Bianchetti CM, Udell HS, Prom BM, Kim H, Adams PD, Northen TR, Fox BG. Multifunctional cellulase catalysis targeted by fusion to different carbohydrate-binding modules. Biotechnol Biofuels, 2015, 8: 220.
|
| [63] |
Xin D, Yang M, Chen X, Zhang J. The access of Trichoderma reesei 6A to cellulose is blocked by isolated hemicelluloses and their derivatives in biomass hydrolysis. RSC Adv, 2016, 6: 73859-73868.
|
| [64] |
Xu N, Liu S, Xin F, Zhou J, Jia H, Xu J, Jiang M, Dong W. Biomethane production from lignocellulose: biomass recalcitrance and its impacts on anaerobic digestion. Front Bioeng Biotechnol, 2019, 7: 191.
|
| [65] |
Yi Z, Su X, Revindran V, Mackie RI, Cann I. Molecular and biochemical analyses of CbCel9A/Cel48A, a highly secreted multi-modular cellulase by Caldicellulosiruptor bescii during growth on crystalline cellulose. PLoS ONE, 2013, 8: e84172.
|
| [66] |
Zhou XW, Li WJ, Mabon R, Broadbelt LJ. A critical review on hemicellulose pyrolysis. Energy Technol, 2017, 5: 52-79.
|
| [67] |
Zoghlami A, Paes G. Lignocellulosic biomass: understanding recalcitrance and predicting hydrolysis. Front Chem, 2019, 7: 874.
|
Funding
National Natural Science Foundation of China(31970036)
The Natural Science Foundation of the Jiangsu Higher Education Institutions of China(20KJB180001)
Natural Science Foundation of Jiangsu Province(BK20171163)