Tunnel engineering for modulating the substrate preference in cytochrome P450BsβHI
Shuaiqi Meng , Ruipeng An , Zhongyu Li , Ulrich Schwaneberg , Yu Ji , Mehdi D. Davari , Fang Wang , Meng Wang , Meng Qin , Kaili Nie , Luo Liu
Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 26
Tunnel engineering for modulating the substrate preference in cytochrome P450BsβHI
An active site is normally located inside enzymes, hence substrates should go through a tunnel to access the active site. Tunnel engineering is a powerful strategy for refining the catalytic properties of enzymes. Here, P450BsβHI (Q85H/V170I) derived from hydroxylase P450Bsβ from Bacillus subtilis was chosen as the study model, which is reported as a potential decarboxylase. However, this enzyme showed low decarboxylase activity towards long-chain fatty acids. Here, a tunnel engineering campaign was performed for modulating the substrate preference and improving the decarboxylation activity of P450BsβHI. The finally obtained BsβHI-F79A variant had a 15.2-fold improved conversion for palmitic acid; BsβHI-F173V variant had a 3.9-fold improved conversion for pentadecanoic acid. The study demonstrates how the substrate preference can be modulated by tunnel engineering strategy.
Tunnel engineering / Substrate preference / Cytochrome P450BsβHI / α-Alkene biosynthesis / Rational design
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
Mendez-Perez D, Begemann MB, Pfleger BF (2011) Modular synthase-encoding gene involved in α-olefin biosynthesis in Synechococcus sp. strain PCC 7002. Appl Environ Microbiol (12): 4264–4267 |
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
Schirmer A, Rude MA, Li X, Popova E, Cardayre SBD (2010) Microbial biosynthesis of alkanes. Science (No.5991):559–562 |
| [38] |
|
| [39] |
Wang S, Jiang S, Chen H, Bai W-J, Wang X (2020) Directed evolution of a hydroxylase into a decarboxylase for synthesis of 1-alkenes from fatty acids. ACS Catalysis 14375–14379. |
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
/
| 〈 |
|
〉 |