Tunnel engineering for modulating the substrate preference in cytochrome P450BsβHI

Shuaiqi Meng , Ruipeng An , Zhongyu Li , Ulrich Schwaneberg , Yu Ji , Mehdi D. Davari , Fang Wang , Meng Wang , Meng Qin , Kaili Nie , Luo Liu

Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 26

PDF
Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 26 DOI: 10.1186/s40643-021-00379-1
Research

Tunnel engineering for modulating the substrate preference in cytochrome P450BsβHI

Author information +
History +
PDF

Abstract

An active site is normally located inside enzymes, hence substrates should go through a tunnel to access the active site. Tunnel engineering is a powerful strategy for refining the catalytic properties of enzymes. Here, P450BsβHI (Q85H/V170I) derived from hydroxylase P450Bsβ from Bacillus subtilis was chosen as the study model, which is reported as a potential decarboxylase. However, this enzyme showed low decarboxylase activity towards long-chain fatty acids. Here, a tunnel engineering campaign was performed for modulating the substrate preference and improving the decarboxylation activity of P450BsβHI. The finally obtained BsβHI-F79A variant had a 15.2-fold improved conversion for palmitic acid; BsβHI-F173V variant had a 3.9-fold improved conversion for pentadecanoic acid. The study demonstrates how the substrate preference can be modulated by tunnel engineering strategy.

Keywords

Tunnel engineering / Substrate preference / Cytochrome P450BsβHI / α-Alkene biosynthesis / Rational design

Cite this article

Download citation ▾
Shuaiqi Meng, Ruipeng An, Zhongyu Li, Ulrich Schwaneberg, Yu Ji, Mehdi D. Davari, Fang Wang, Meng Wang, Meng Qin, Kaili Nie, Luo Liu. Tunnel engineering for modulating the substrate preference in cytochrome P450BsβHI. Bioresources and Bioprocessing, 2021, 8(1): 26 DOI:10.1186/s40643-021-00379-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, Ben-Tal N. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res, 2016, 44(W1): W344-350.

[2]

Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res, 2010, 38(Web Server Issue): 529-533.

[3]

Bauer D, Zachos I, Sieber V. Production of propene from n-Butanol: a three-step cascade utilizing the cytochrome P450 fatty acid decarboxylase OleTJE. ChemBioChem, 2020, 21(22): 3273-3281.

[4]

Beller HR, Goh EB, Keasling JD. Genes involved in long-chain alkene biosynthesis in Micrococcus luteus. Appl Environ Microbiol, 2010, 76(4): 1212-1223.

[5]

Benkaidali L, Andre F, Maouche B, Siregar P, Benyettou M, Maurel F, . Computing cavities, channels, pores and pockets in proteins from non-spherical ligands models. Bioinformatics, 2014, 30(6): 792-800.

[6]

Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K. Engineering the third wave of biocatalysis. Nature, 2012, 485(7397): 185-194.

[7]

Bornscheuer UT, Pohl M. Improved biocatalysts by directed evolution and rational protein design. Curr Opin Chem Biol, 2001, 5(2): 137-143.

[8]

Celniker G, Nimrod G, Ashkenazy H, Glaser F, Martz E, Mayrose I, Pupko T, Ben-Tal N. ConSurf: using evolutionary data to raise testable hypotheses about protein function. Isr J Chem, 2013, 53(3–4): 199-206.

[9]

Cheng Z, Cui W, Liu Z, Zhou L, Wang M, Kobayashi M, . A switch in a substrate tunnel for directing regioselectivity of nitrile hydratases towards α, ω-dinitriles. Catal Sci Technol, 2016, 6(5): 1292-1296.

[10]

Cid H, Bunster M, Canales M, Gazitúa F. Hydrophobicity and structural classes in proteins. Protein Eng Des Sel, 1992, 5(5): 373-375.

[11]

Cojocaru V, Winn PJ, Wade RC. The ins and outs of cytochrome P450s. Biochim Biophys Acta, 2007, 1770(3): 390-401.

[12]

Cui H, Cao H, Cai H, Jaeger KE, Davari MD, Schwaneberg U. Computer-Assisted Recombination (CompassR) teaches us how to recombine beneficial substitutions from directed evolution campaigns. Chemistry, 2020, 26(3): 643-649.

[13]

Damborsky J, Brezovsky J. Computational tools for designing and engineering enzymes. Curr Opin Chem Biol, 2014, 19: 8-16.

[14]

Dennig A, Kuhn M, Tassoti S, Thiessenhusen A, Gilch S, Bulter T, Haas T, Hall M, Faber K. Oxidative decarboxylation of short-chain fatty acids to 1-alkenes. Angew Chem Int Ed Engl, 2015, 54(30): 8819-8822.

[15]

Dutta K, Daverey A, Lin JG. Evolution retrospective for alternative fuels: first to fourth generation. Renew Energ, 2014, 69(3): 114-122.

[16]

Gora A, Brezovsky J, Damborsky J. Gates of enzymes. Chem Rev, 2013, 113(8): 5871-5923.

[17]

Grant JL, Hsieh CH, Makris TM. Decarboxylation of fatty acids to terminal alkenes by cytochrome P450 compound I. J Am Chem Soc, 2015, 137(15): 4940-4943.

[18]

Hess B, Kutzner C, Van Der Spoel D, Lindahl E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput, 2008, 4(3): 435-447.

[19]

Hsieh CH, Makris TM. Expanding the substrate scope and reactivity of cytochrome P450 OleT. Biochem Biophys Res Commun, 2016, 476(4): 462-466.

[20]

Jiang Y, Li Z, Wang C, Zhou YJ, Xu H, Li S. Biochemical characterization of three new alpha-olefin-producing P450 fatty acid decarboxylases with a halophilic property. Biotechnol Biofuels, 2019, 12: 79.

[21]

Jurcik A, Bednar D, Byska J, Marques SM, Furmanova K, Daniel L, . CAVER Analyst 2.0: analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories. Bioinformatics, 2018, 34(20): 3586-3588.

[22]

Kingsley LJ, Lill MA. Substrate tunnels in enzymes: structure-function relationships and computational methodology. Proteins, 2015, 83(4): 599-611.

[23]

Kokkonen P, Bednar D, Pinto G, Prokop Z, Damborsky J. Engineering enzyme access tunnels. Biotechnol Adv, 2019, 37(6): 107386.

[24]

Kozlikova B, Sebestova E, Sustr V, Brezovsky J, Strnad O, Daniel L, . CAVER Analyst 1.0: graphic tool for interactive visualization and analysis of tunnels and channels in protein structures. Bioinformatics, 2014, 30(18): 2684-2685.

[25]

Kress N, Halder JM, Rapp LR, Hauer B. Unlocked potential of dynamic elements in protein structures: channels and loops. Curr Opin Chem Biol, 2018, 47: 109-116.

[26]

Lee DS, Yamada A, Sugimoto H, Matsunaga I, Ogura H, Ichihara K, . Substrate recognition and molecular mechanism of fatty acid hydroxylation by cytochrome P450 from Bacillus subtilis. Crystallographic, spectroscopic, and mutational studies. J Biol Chem, 2003, 278(11): 9761-9767.

[27]

Lee SK, Chou H, Ham TS, Lee TS, Keasling JD. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol, 2008, 19(6): 556-563.

[28]

Lu Z, Li X, Zhang R, Yi L, Ma Y, Zhang G. Tunnel engineering to accelerate product release for better biomass-degrading abilities in lignocellulolytic enzymes. Biotechnol Biofuels, 2019, 12: 275.

[29]

Magdziarz T, Mitusinska K, Goldowska S, Pluciennik A, Stolarczyk M, Lugowska M, . AQUA-DUCT: a ligands tracking tool. Bioinformatics, 2017, 33(13): 2045-2046.

[30]

Matsunaga I, Ueda A, Fujiwara N, Sumimoto T, Ichihara K. Characterization of the ybdT gene product of Bacillus subtilis: novel fatty acid beta-hydroxylating cytochrome P450. Lipids, 1999, 34(8): 841.

[31]

Matsunaga I, Sumimoto T, Ueda A, Kusunose E, Ichihara K. Fatty acid-specific, regiospecific, and stereospecific hydroxylation by cytochrome P450 (CYP152B1) from Sphingomonas paucimobilis: substrate structure required for α-hydroxylation. Lipids, 2000, 35(4): 365-371.

[32]

Mendez-Perez D, Begemann MB, Pfleger BF (2011) Modular synthase-encoding gene involved in α-olefin biosynthesis in Synechococcus sp. strain PCC 7002. Appl Environ Microbiol (12): 4264–4267

[33]

Pavlova M, Klvana M, Prokop Z, Chaloupkova R, Banas P, Otyepka M, . Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nat Chem Biol, 2009, 5(10): 727-733.

[34]

Pravda L, Berka K, Vařeková RS, Sehnal D, Banáš P, Laskowski RA, . Anatomy of enzyme channels. BMC Bioinformatics, 2014, 15(1): 379.

[35]

Pravda L, Sehnal D, Tousek D, Navratilova V, Bazgier V, Berka K, . MOLEonline: a web-based tool for analyzing channels, tunnels and pores (2018 update). Nucleic Acids Res, 2018, 46(W1): W368-W373.

[36]

Rude MA, Baron TS, Shane B, Murtaza A, Cardayre SB, Andreas S. Terminal olefin (1-alkene) biosynthesis by a novel p450 fatty acid decarboxylase from Jeotgalicoccus species. Appl Environ Microbiol, 2011, 77(5): 1718.

[37]

Schirmer A, Rude MA, Li X, Popova E, Cardayre SBD (2010) Microbial biosynthesis of alkanes. Science (No.5991):559–562

[38]

Sehnal D, Vařeková RS, Berka K, Pravda L, Navrátilová V, Banáš P, . MOLE 2.0: advanced approach for analysis of biomacromolecular channels. J Cheminformatics, 2013, 5(1): 39.

[39]

Wang S, Jiang S, Chen H, Bai W-J, Wang X (2020) Directed evolution of a hydroxylase into a decarboxylase for synthesis of 1-alkenes from fatty acids. ACS Catalysis 14375–14379.

[40]

Whitehouse CJ, Bell SG, Wong LL. P450(BM3) (CYP102A1): connecting the dots. Chem Soc Rev, 2012, 41(3): 1218-1260.

[41]

Xu H, Ning L, Yang W, Fang B, Wang C, Wang Y, . In vitro oxidative decarboxylation of free fatty acids to terminal alkenes by two new P450 peroxygenases. Biotechnol Biofuels, 2017, 10(1): 208.

[42]

Yi L, Cong W, Jinyong Y, Wei Z, Wenna G, Xuefeng L, . Hydrogen peroxide-independent production of α-alkenes by OleTJE P450 fatty acid decarboxylase. Biotechnol Biofuels, 2014, 7(1): 28-28.

[43]

Yu X, Cojocaru V, Wade RC. Conformational diversity and ligand tunnels of mammalian cytochrome P450s. Biotechnol Appl Biochem, 2013, 60(1): 134-145.

[44]

Zhou HX, McCammon JA. The gates of ion channels and enzymes. Trends Biochem Sci, 2010, 35(3): 179-185.

[45]

Zimmerman J, Eliezer N, Simha R. The characterization of amino acid sequences in proteins by statistical methods. J Theor Biol, 1968, 21(2): 170-201.

Funding

National Natural Science Foundation of China(31961133017)

European Union’s Horizon 2020(870294)

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/