Recovery and evaluation of cellulose from agroindustrial residues of corn, grape, pomegranate, strawberry-tree fruit and fava

Mariana Vallejo , Rachel Cordeiro , Paulo A. N. Dias , Carla Moura , Marta Henriques , Inês J. Seabra , Cândida Maria Malça , Pedro Morouço

Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 25

PDF
Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 25 DOI: 10.1186/s40643-021-00377-3
Research

Recovery and evaluation of cellulose from agroindustrial residues of corn, grape, pomegranate, strawberry-tree fruit and fava

Author information +
History +
PDF

Abstract

Considering the expected increasing demand for cellulose fibers in the near future and that its major source is wood pulp, alternative sources such as vegetable wastes from agricultural activities and agro-food industries are currently being sought to prevent deforestation. In the present study, cellulose was successfully isolated from six agroindustrial residues: corncob, corn husk, grape stalk, pomegranate peel, marc of strawberry-tree fruit and fava pod. Cellulose fibers were characterized by Fourier-transform infrared spectroscopy, thermogravimetric analysis, stereomicroscopy and scanning electron microscopy (SEM). Despite the evident morphological differences among the extracted celluloses, results revealed similar compositional and thermal properties with the wood-derived commercial microcrystalline cellulose used as a control. Trace amounts of lignin or hemicellulose were detected in all cellulose samples, with the exception of corncob cellulose, that exhibited the greatest extraction yield (26%) and morphological similarities to wood-derived microcrystalline cellulose, visible through SEM. Furthermore, corncob cellulose was found to have thermal properties (TOnset of 307.17 °C, TD of 330.31 °C, and ΔH of 306.04 kJ/kg) suitable for biomedical applications.

Keywords

Agroindustrial residue valorization / Cellulose / Solvent extraction / ATR-FTIR / TGA–DSC

Cite this article

Download citation ▾
Mariana Vallejo, Rachel Cordeiro, Paulo A. N. Dias, Carla Moura, Marta Henriques, Inês J. Seabra, Cândida Maria Malça, Pedro Morouço. Recovery and evaluation of cellulose from agroindustrial residues of corn, grape, pomegranate, strawberry-tree fruit and fava. Bioresources and Bioprocessing, 2021, 8(1): 25 DOI:10.1186/s40643-021-00377-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdul Khalil HPS, Adnan AS, Yahya EB, Olaiya NG, Safrida S, Hossain MS, Balakrishnan V, Gopakumar DA, Abdullah CK, Oyekanmi AA, Pasquini DA. A review on plant cellulose nanofibre-based aerogels for biomedical applications. Polymers, 2020, 12: 1759.

[2]

AGROTEC (2015) É tempo da romã: benefícios e características do fruto. AGROTEC. http://www.agrotec.pt/noticias/e-tempo-da-roma-beneficios-e-caracteristicas-do-fruto/. Accessed 28 Dec 2019.

[3]

Amendola D, De Faveri DM, Egües I, Serrano L, Labidi J, Spigno G. Autohydrolysis and organosolv process for recovery of hemicelluloses, phenolic compounds and lignin from grape stalks. Bioresour Technol, 2012, 107: 267-274.

[4]

Anjos O, Canas S, Gonçalves JC, Caldeira I. Development of a spirit drink produced with strawberry tree (Arbutus unedo L.) fruit and honey. Beverages, 2020, 6: 38.

[5]

Basterrechea M, Hicks JR. Effect of maturity on carbohydrate changes in sugar snap pea pods during storage. Sci Hortic, 1991, 48: 1-8.

[6]

Carlström IE, Rashad A, Campodoni E, Sandri M, Syverud K, Bolstad AI, Mustafa K. Cross-linked gelatin-nanocellulose scaffolds for bone tissue engineering. Mater Lett, 2020, 264: 127326.

[7]

Colom X, Carrillo F, Nogués F, Garriga P. Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polym Degrad Stab, 2003, 80: 543-549.

[8]

Crépon K, Marget P, Peyronnet C, Carrouée B, Arese P, Duc G. Nutritional value of fava bean (Vicia faba L.) seeds for feed and food. Field Crops Res, 2010, 115: 329-339.

[9]

de Andrade MR, Nery TBR, de Santana e Santana TI, Leal IL, Rodrigues LAP, de Oliveira Reis JH, Druzian JI, Machado BAS. Effect of cellulose nanocrystals from different lignocellulosic residues to chitosan/glycerol films. Polymers, 2019, 11: 658.

[10]

de Carvalho Mendes CA, Ferreira NMS, Furtado CRG, de Sousa AMF. Isolation and characterization of nanocrystalline cellulose from corn husk. Mater Lett, 2015, 148: 26-29.

[11]

Dhyania V, Kumar J, Bhaskar T. A comparative study of thermal decomposition kinetics of cellulose, hemicellulose, and lignin. J Energy Environ Sustain, 2020, 9: 13-18.

[12]

Ferreira J, Esteves B, Cruz-Lopes L, Pereira H, Domingos I. Environmental advantages through producing energy from grape stalk pellets instead of wood pellets and other sources. Int J Environ Stud, 2018, 75: 812-826.

[13]

García A, González Alriols M, Labidi J. Evaluation of different lignocellulosic raw materials as potential alternative feedstocks in biorefinery processes. Ind Crops Prod, 2014, 53: 102-110.

[14]

Gómez LD, Amalfitano C, Andolfi A, Simister R, Somma S, Ercolano MR, Borrelli C, McQuenn-Mason SJ, Frusciante L, Cuciniello A, Caruso G. Valorising faba bean residual biomass: effect of farming system and planting time on the potential for biofuel production. Biomass Bioenerg, 2017, 107: 227-232.

[15]

Gontard N, Sonesson U, Birkved M, Majone M, Bolzonella D, Celli A, Angellier-Coussy H, Jang G, Verniquet A, Broeze J, Schaer B. A research challenge vision regarding management of agricultural waste in a circular bio-based economy. Critical Rev Env Sci Tech, 2018, 48: 614-654.

[16]

Gullón P, Astray G, Gullón B, Tomasevic I, Lorenzo JM. Pomegranate peel as suitable source of high-added value bioactives: tailored functionalized meat products. Molecules, 2020, 25: 2859-2877.

[17]

Hasnaoui N, Wathelet B, Jiménez-Araujo A. Valorization of pomegranate peel from 12 cultivars: dietary fibre composition, antioxidant capacity and functional properties. Food Chem, 2014, 160: 196-203.

[18]

Hickey RJ, Pelling AE. Cellulose biomaterials for tissue engineering. Front Bioeng Biotechnol, 2019, 7: 45.

[19]

Hindi SSZ. Microcrystalline cellulose: the inexhaustible treasure for pharmaceutical industry. Nanosci Nanotechnol Res, 2017, 4: 17-24.

[20]

INE, I.P. (2019) Estatísticas Agrícolas 2018. Instituto Nacional de Estatística. https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_publicacoes&PUBLICACOESpub_boui=358629204&PUBLICACOEStema=55505&PUBLICACOESmodo=2. Accessed 25 Jan 2020.

[21]

Jakab E, Bora Á, Sebestyén Z, Borsa J. Thermal decomposition of chemically treated cellulosic fibers. J Therm Anal Calorim, 2018, 132: 433-443.

[22]

Kalita RD, Nath Y, Ochubiojo ME, Buragohain AK. Extraction and characterization of microcrystalline cellulose from fodder grass; Setaria glauca (L.) P. Beauv, and its potential as a drug delivery vehicle for isoniazid, a first line antituberculosis drug. Colloids Surf B Biointerfaces, 2013, 108: 85-89.

[23]

Lara I, Belge B, Goulao LF. A focus on the biosynthesis and composition of cuticle in fruits. J Agric Food Chem, 2015, 63: 4005-4019.

[24]

Madureira AR, Atatoprak T, Çabuk D, Sousa F, Pullar RC, Pintado M. Extraction and characterisation of cellulose nanocrystals from pineapple peel. Int J Food Stud, 2018, 7: 24-33.

[25]

Maheswari CU, Reddy KO, Muzenda E, Guduri BR, Rajulu AV. Extraction and characterization of cellulose microfibrils from agricultural residue—Cocos nucifera L. Biomass Bioenergy, 2012, 46: 555-563.

[26]

Malushi N, Papa L, Maia M, Oliveira H. Determination of chemical content and dry matter digestibility of some under-utilized feeds in ruminants feeding through two in vitro methods. Sci Pap Ser D Anim Sci, 2017, 60: 91-96.

[27]

Malviya S, Jha A, Hettiarachchy N. Antioxidant and antibacterial potential of pomegranate peel extracts. J Food Sci Technol, 2014, 51: 4132-4137.

[28]

Mateos-Aparicio I, Redondo-Cuenca A, Villanueva-Suárez MJ. Isolation and characterization of cell wall polysaccharides from legume by-products: Okara (soymilk residue), pea pod and broad bean pod. Food Chem, 2010, 122: 339-345.

[29]

Mejri F, Selmi S, Martins A, Benkhoud H, Baati T, Chaabane H, Njim L, Hosni K. Broad bean (Vicia faba L.) pods: A rich source of bioactive ingredients with antimicrobial, antioxidant, enzyme inhibitory, anti-diabetic and health-promoting properties. Food Funct, 2018, 9: 2051-2069.

[30]

Mendes CADC, Adnet FADO, Leite MCAM, Furtado CRG, de Sousa AMF. Chemical, physical, mechanical, thermal and morphological characterization of corn husk residue. Cellul Chem Technol, 2015, 49: 727-735.

[31]

Millar KA, Gallagher E, Burke R, McCarthy S, Barry-Ryan C. Proximate composition and anti-nutritional factors of fava-bean (Vicia faba), green-pea and yellow-pea (Pisum sativum) flour. J Food Compos Anal, 2019, 82: 103233.

[32]

Morán JI, Alvarez VA, Cyras VP, Vázquez A. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose, 2008, 15: 149-159.

[33]

Mujtaba M, Kaya M, Atalay EB, Yilmaz BA (2016) Recycling and physicochemical characterization of pomegranate waste peels into a green material (cellulose). In: International conference on natural science and engineering (ICNASE’16), Kilis, Turkey, March 19–20. https://doi.org/10.13140/RG.2.1.4844.8405.

[34]

Müller FA, Müller L, Hofmann I, Greil P, Wenzel MM, Staudenmaier R. Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials, 2006, 27(21): 3955-3963.

[35]

Naseri N, Poirier J-M, Girandon L, Fröhlich M, Oksman K, Mathew AP. 3-Dimensional porous nanocomposite scaffolds based on cellulose nanofibers for cartilage tissue engineering: tailoring of porosity and mechanical performance. RSC Adv, 2016, 6: 5999-6007.

[36]

Nechyporchuk O, Belgacem MN, Bras J. Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod, 2016, 93: 2-25.

[37]

Neto WPF, Silvério HA, Dantas NO, Pasquini D. Extraction and characterization of cellulose nanocrystals from agro-industrial residue—Soy hulls. Ind Crops Prod, 2013, 42: 480-488.

[38]

Özcan MM, Haciseferoğullari H. The strawberry (Arbutus unedo L.) fruits: chemical composition, physical properties and mineral contents. J Food Eng, 2007, 78: 1022-1028.

[39]

Pennells J, Godwin ID, Amiralian N, Martin DJ. Trends in the production of cellulose nanofibers from non-wood sources. Cellulose, 2020, 27: 575-593.

[40]

Pereira PHF, Oliveira TÍS, Rosa MF, Cavalcante FL, Moates GK, Wellner N, Waldron KW, Azeredo HMC. Pectin extraction from pomegranate peels with citric acid. Int J Biol Macromol, 2016, 88: 373-379.

[41]

Pointner M, Kuttner P, Obrlik T, Jäger A, Kahr H. Composition of corncobs as a substrate for fermentation of biofuels. Agron Res, 2014, 12: 391-396.

[42]

Poletto M, Ornaghi H, Zattera A. Native cellulose: structure, characterization and thermal properties. Materials, 2014, 7: 6105-6119.

[43]

Reddy N, Yang Y. Innovative biofibers from renewable resources, 2015, Berlin: Springer

[44]

Rojas J, Bedoya M, Ciro Y. Poletto M, Junior HLO. Current trends in the production of cellulose nanoparticles and nanocomposites for biomedical applications. Cellulose: fundamental aspects and current trends, 2015, London: Intech.

[45]

Roos Y. Characterization of food polymers using state diagrams. J Food Eng, 1995, 24: 339-360.

[46]

Ruiz-Rodríguez BM, Morales P, Fernández-Ruiz V, Sánchez-Mata MC, Cámara M, Díez-Marqués C, Pardo-de-Santayana M, Molina M, Tardío J. Valorization of wild strawberry-tree fruits (Arbutus unedo L.) through nutritional assessment and natural production data. Food Res Int, 2011, 44: 1244-1253.

[47]

Sharma A, Thakur M, Bhattacharya M, Mandal T, Goswami S. Commercial application of cellulose nano-composites – A review. Biotechnol Rep, 2019, 21: e00316.

[48]

Shebani AN, van Reenen AJ, Meincken M. The effect of wood extractives on the thermal stability of different wood species. Thermochim Acta, 2008, 471: 43-50.

[49]

Šic Žlabur J, Bogdanović S, Voća S, Skendrović Babojelić M. Biological potential of fruit and leaves of strawberry tree (Arbutus unedo L.) from Croatia. Molecules, 2020, 25: 5102.

[50]

Singh B, Singh JP, Kaur A, Singh N. Phenolic compounds as beneficial phytochemicals in pomegranate (Punica granatum L.) peel: a review. Food Chem, 2018, 261: 75-86.

[51]

Sousa EC, Uchôa-Thomaz AMA, Carioca JOB, Morais SM, Lima A, Martins CG, Alexandrino CD, Ferreira PAT, Rodrigues ALM, Rodrigues SP, Silva JN, Rodrigues LL. Chemical composition and bioactive compounds of grape pomace (Vitis vinifera L.), Benitaka variety, grown in the semiarid region of Northeast Brazil. Food Sci Technol, 2014, 34: 135-142.

[52]

Spigno G, Pizzorno T, De Faveri DM. Cellulose and hemicelluloses recovery from grape stalks. Bioresour Technol, 2008, 99: 4329-4337.

[53]

Statista (2020) Global corn production in 2018/19, by country. https://www.statista.com/statistics/254292/global-corn-production-by-country/. Accessed 4 Dec 2019.

[54]

Sultan S, Mathew AP. 3D printed porous cellulose nanocomposite hydrogel scaffolds. J Vis Exp, 2019

[55]

Sun XF, Sun RC, Su Y, Sun JX. Comparative study of crude and purified cellulose from wheat straw. J Agric Food Chem, 2004, 52: 839-847.

[56]

Ullah N, Ali J, Khan FA, Khurram M, Hussain A, Rahman IU, Rahman ZU, Ullah S. Proximate composition, minerals content, antibacterial and antifungal activity evaluation of pomegranate (Punica granatum L.) peels powder. Middle-East J Sci Res, 2012, 11: 396-401.

[57]

Yeasmin MS, Mondal MIH. Synthesis of highly substituted carboxymethyl cellulose depending on cellulose particle size. Int J Biol Macromol, 2015, 80: 725-731.

Funding

European Regional Development Fund(POCI-01-0145-FEDER-023423)

Fundação para a Ciência e a Tecnologia(UID/Multi/04044/2019)

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/