Material utilization of green waste: a review on potential valorization methods

Alexander Langsdorf , Marianne Volkmar , Dirk Holtmann , Roland Ulber

Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 19

PDF
Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 19 DOI: 10.1186/s40643-021-00367-5
Review

Material utilization of green waste: a review on potential valorization methods

Author information +
History +
PDF

Abstract

Considering global developments like climate change and the depletion of fossil resources, the use of new and sustainable feedstocks such as lignocellulosic biomass becomes inevitable. Green waste comprises heterogeneous lignocellulosic biomass with low lignin content, which does not stem from agricultural processes or purposeful cultivation and therefore mainly arises in urban areas. So far, the majority of green waste is being composted or serves as feedstock for energy production. Here, the hitherto untapped potential of green waste for material utilization instead of conventional recycling is reviewed. Green waste is a promising starting material for the direct extraction of valuable compounds, the chemical and fermentative conversion into basic chemicals as well as the manufacturing of functional materials like electrodes for electro-biotechnological applications through carbonization. This review serves as a solid foundation for further work on the valorization of green waste.

Keywords

Green waste / Biomass pretreatment / Biomass conversion / Valorization / Carbonization

Cite this article

Download citation ▾
Alexander Langsdorf, Marianne Volkmar, Dirk Holtmann, Roland Ulber. Material utilization of green waste: a review on potential valorization methods. Bioresources and Bioprocessing, 2021, 8(1): 19 DOI:10.1186/s40643-021-00367-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abatzoglou N, Chornet E, Belkacemi K, Overend RP. Phenomenological kinetics of complex systems: the development of a generalized severity parameter and its application to lignocellulosics fractionation. Chem Eng Sci, 1992, 47(5): 1109-1122.

[2]

Acharjee TC, Coronella CJ, Vasquez VR. Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass. Biores Technol, 2011, 102(7): 4849-4854.

[3]

Akalın MK, Tekin K, Karagöz S. Supercritical fluid extraction of biofuels from biomass. Environ Chem Lett, 2017, 15(1): 29-41.

[4]

Akermann A, Weiermüller J, Ulber R. Aufbau eines Bioraffineriekonzeptes für Biertreber mit vorgelagertem Pressschritt. Chem Ing Tec, 2019, 91(11): 1606-1614.

[5]

Akin DE, Rigsby LL, Sethuraman A, Morrison WH, Gamble GR, Eriksson KLE. Alterations in structure, chemistry, and biodegradability of grass lignocellulose treated with the white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus. Appl Environ Microbiol, 1995, 61(4): 1591-1598.

[6]

Álvarez C, Reyes-Sosa FM, Díez B. Enzymatic hydrolysis of biomass from wood. Microb Biotechnol, 2016, 9(2): 149-156.

[7]

Alvo P, Belkacemi K. Enzymatic saccharification of milled timothy (Phleum pratense L.) and alfalfa (Medicago sativa L.). Biores Technol, 1997, 61(3): 185-198.

[8]

Alzagameem A, El Khaldi-Hansen B, Kamm B, Schulze M. Vaz S. Erratum to: lignocellulosic biomass for energy, biofuels, biomaterials, and chemicals. Biomass and green chemistry, 2018, Cham: Springer International Publishing, E1-E1.

[9]

Alzagameem A, Klein SE, Bergs M, Do XT, Korte I, Dohlen S, Hüwe C, Kreyenschmidt J, Kamm B, Larkins M, Schulze M. Antimicrobial activity of lignin and lignin-derived cellulose and chitosan composites against selected pathogenic and spoilage microorganisms. Polymers, 2019, 11(4): 670.

[10]

Andersen M, Kiel P. Integrated utilisation of green biomass in the green biorefinery. Ind Crops Prod, 2000, 11(2–3): 129-137.

[11]

Antonetti C, Bonari E, Licursi D, Di Nassi O, Nasso N, Raspolli Galletti AM. Hydrothermal conversion of giant reed to furfural and levulinic acid: optimization of the process under microwave irradiation and investigation of distinctive agronomic parameters. Molecules (Basel, Switzerland), 2015, 20(12): 21232-21253.

[12]

Asrofi M, Abral H, Kasim A, Pratoto A, Mahardika M, Park J-W, Kim H-J. Isolation of nanocellulose from water hyacinth fiber (WHF) produced via digester-sonication and its characterization. Fibers Polym, 2018, 19(8): 1618-1625.

[13]

Attard TM, McElroy CR, Gammons RJ, Slattery JM, Supanchaiyamat N, Kamei CLA, Dolstra O, Trindade LM, Bruce NC, McQueen-Mason SJ, Shimizu S, Hunt AJ. Supercritical CO2 extraction as an effective pretreatment step for wax extraction in a miscanthus biorefinery. ACS Sustain Chem Eng, 2016, 4(11): 5979-5988.

[14]

Bagby MO, Nelson GH, Helman EG, Clark TF (1971) Determination of lignin in non-wood plant fiber sources. Tappi 1971 (54), 11: 1876–1878.

[15]

Bai R, Wang W, Yu Q, Zhang Q, Kong X, Sun Y, Zhuang X, Wang Z, Yuan Z. Predictive modelling of sugar release from blended garden wastes in a microwave-assisted hot water process. Waste Biomass Valor, 2020

[16]

Barakat A, de Vries H, Rouau X. Dry fractionation process as an important step in current and future lignocellulose biorefineries: a review. Biores Technol, 2013, 134: 362-373.

[17]

Bayer EA, Belaich J-P, Shoham Y, Lamed R. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol, 2004, 58: 521-554.

[18]

Bertella S, Luterbacher JS. Lignin functionalization for the production of novel materials. Trends Chem, 2020, 2(5): 440-453.

[19]

Bichot A, Lerosty M, Geirnaert L, Méchin V, Carrère H, Bernet N, Delgenès J-P, García-Bernet D. Soft microwave pretreatment to extract P-hydroxycinnamic acids from grass stalks. Molecules (Basel, Switzerland), 2019, 24(21): 3885.

[20]

Bidin N, Zakaria MH, Bujang JS, Abdul Aziz NA. Suitability of aquatic plant fibers for handmade papermaking. Int J Polym Sci, 2015, 2015: 1-9.

[21]

Boakye-Boaten NA, Xiu S, Shahbazi A, Wang L, Li R, Schimmel K. Uses of miscanthus press juice within a green biorefinery platform. Biores Technol, 2016, 207: 285-292.

[22]

Bokinsky G, Peralta-Yahya PP, George A, Holmes BM, Steen EJ, Dietrich J, Lee TS, Tullman-Ercek D, Voigt CA, Simmons BA, Keasling JD. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc Natl Acad Sci USA, 2011, 108(50): 19949-19954.

[23]

Boldrin A, Christensen TH. Seasonal generation and composition of garden waste in Aarhus (Denmark). Waste Manag, 2010, 30(4): 551-557.

[24]

Brugger D, Nadler C, Windisch WM, Bolduan C. Feed protein value of acidic precipitates obtained from press juices of three types of green forage leaves. Anim Feed Sci Technol, 2016, 222: 236-241.

[25]

Bussemaker MJ, Xu F, Zhang D. Manipulation of ultrasonic effects on lignocellulose by varying the frequency, particle size, loading and stirring. Biores Technol, 2013, 148: 15-23.

[26]

Cao L, Luo G, Tsang DCW, Chen H, Zhang S, Chen J. A novel process for obtaining high quality cellulose acetate from green landscaping waste. J Clean Prod, 2018, 176: 338-347.

[27]

Cerrone F, Davis R, Kenny ST, Woods T, O'Donovan A, Gupta VK, Tuohy M, Babu RP, O'Kiely P, O'Connor K. Use of a mannitol rich ensiled grass press juice (EGPJ) as a sole carbon source for polyhydroxyalkanoates (PHAs) production through high cell density cultivation. Biores Technol, 2015, 191: 45-52.

[28]

Chang VS, Holtzapple M. Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol, 2000, 84–86: 5-37.

[29]

Chaturvedi V, Verma P. An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech, 2013, 3(5): 415-431.

[30]

Chen S-F, Mowery RA, Chambliss CK, van Walsum GP. Pseudo reaction kinetics of organic degradation products in dilute-acid-catalyzed corn stover pretreatment hydrolysates. Biotechnol Bioeng, 2007, 98(6): 1135-1145.

[31]

Chornet E, Overend RP. Ruiz HA, Hedegaard Thomsen M, Trajano HL. How the severity factor in biomass hydrolysis came about. Hydrothermal processing in biorefineries, 2017, Cham: Springer International Publishing, 1-3.

[32]

Chum HL, Johnson DK, Black SK. Organosolv pretreatment for enzymic hydrolysis of poplars. 2. Catalyst effects and the combined severity parameter. Ind Eng Chem Res, 1990, 29(2): 156-162.

[33]

Dababi I, Gimello O, Elaloui E, Quignard F, Brosse N. Organosolv lignin-based wood adhesive. Influence of the lignin extraction conditions on the adhesive performance. Polymers, 2016, 8(9): 340.

[34]

Dąbkowska K, Alvarado-Morales M, Kuglarz M, Angelidaki I. Miscanthus straw as substrate for biosuccinic acid production: focusing on pretreatment and downstream processing. Biores Technol, 2019, 278: 82-91.

[35]

Das SP, Ghosh A, Gupta A, Goyal A, Das D. Lignocellulosic fermentation of wild grass employing recombinant hydrolytic enzymes and fermentative microbes with effective bioethanol recovery. Biomed Res Int, 2013, 2013: 386063.

[36]

Dasari RK, Berson RE. The effect of particle size on hydrolysis reaction rates and rheological properties in cellulosic slurries. Appl Biochem Biotechnol, 2007, 136–140: 289-299.

[37]

Davis R, Kataria R, Cerrone F, Woods T, Kenny S, O'Donovan A, Guzik M, Shaikh H, Duane G, Gupta VK, Tuohy MG, Padamatti RB, Casey E, O'Connor KE. Conversion of grass biomass into fermentable sugars and its utilization for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas strains. Biores Technol, 2013, 150: 202-209.

[38]

Deng L, Yuan Y, Zhang Y, Wang Y, Chen Y, Yuan H, Chen Y. Alfalfa leaf-derived porous heteroatom-doped carbon materials as efficient cathodic catalysts in microbial fuel cells. ACS Sustain Chem Eng, 2017, 5(11): 9766-9773.

[39]

Dionisi D, Anderson JA, Aulenta F, McCue A, Paton G. The potential of microbial processes for lignocellulosic biomass conversion to ethanol: a review. J Chem Technol Biotechnol, 2015, 90(3): 366-383.

[40]

Dotsenko G, Lange L. Enzyme enhanced protein recovery from green biomass pulp. Waste Biomass Valor, 2017, 8(4): 1257-1264.

[41]

Du W, Yu H, Song L, Zhang J, Weng C, Ma F, Zhang X. The promoting effect of byproducts from Irpex lacteus on subsequent enzymatic hydrolysis of bio-pretreated cornstalks. Biotechnol Biofuels, 2011, 4(1): 37.

[42]

Dussan K, Girisuta B, Haverty D, Leahy JJ, Hayes MHB. Kinetics of levulinic acid and furfural production from Miscanthus × giganteus. Biores Technol, 2013, 149: 216-224.

[43]

Eades P, Kusch-Brandt S, Heaven S, Banks CJ. Estimating the generation of garden waste in england and the differences between rural and urban areas. Resources, 2020, 9(1): 8.

[44]

Eibisch N, Helfrich M, Don A, Mikutta R, Kruse A, Ellerbrock R, Flessa H. Properties and degradability of hydrothermal carbonization products. J Environ Qual, 2013, 42(5): 1565-1573.

[45]

Elander RT, Dale BE, Holtzapple M, Ladisch MR, Lee YY, Mitchinson C, Saddler JN, Wyman CE. Summary of findings from the Biomass Refining Consortium for Applied Fundamentals and Innovation (CAFI): corn stover pretreatment. Cellulose, 2009, 16(4): 649-659.

[46]

Emmclan LSH, Zakaria MH, Bujang JS. Utilization of aquatic weeds fibers for handmade papermaking. BioResources, 2018, 13: 5684-5701.

[47]

Engel M, Holtmann D, Ulber R, Tippkötter N. Increased biobutanol production by mediator-less electro-fermentation. Biotechnol J, 2019, 14(4): e1800514.

[48]

Enzmann F, Mayer F, Holtmann D. Process parameters influence the extracellular electron transfer mechanism in bioelectromethanogenesis. Int J Hydrogen Energy, 2019, 44(45): 24450-24458.

[49]

Enzmann F, Stöckl M, Gronemeier D, Holtmann D. Insights in the anode chamber influences on cathodic bioelectromethanogenesis—systematic comparison of anode materials and anolytes. Eng Life Sci, 2019, 19(11): 795-804.

[50]

Escobar ELN, da Silva TA, Pirich CL, Corazza ML, Pereira Ramos L. Supercritical fluids: a promising technique for biomass pretreatment and fractionation. Front Bioeng Biotechnol, 2020, 8: 252.

[51]

European Commission. A sustainable bioeconomy for Europe: strengthening the connection between economy, society and the environment: updated bioeconomy strategy, 2018, Luxembourg: Publications Office of the European Union, 107.

[52]

Fillat Ú, Ibarra D, Eugenio M, Moreno A, Tomás-Pejó E, Martín-Sampedro R. Laccases as a potential tool for the efficient conversion of lignocellulosic biomass: a review. Fermentation, 2017, 3(2): 17.

[53]

Gao Z, Zhang Y, Song N, Li X. Biomass-derived renewable carbon materials for electrochemical energy storage. Mater Res Lett, 2017, 5(2): 69-88.

[54]

German Federal Environment Agency, 2020. Biowaste. German Federal Environment Agency. https://www.umweltbundesamt.de/daten/ressourcen-abfall/verwertung-entsorgung-ausgewaehlter-abfallarten/bioabfaelle#bioabfalle-gute-qualitat-ist-voraussetzung-fur-eine-hochwertige-verwertung. Accessed 26 Aug 2020.

[55]

German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (2019) Statistics biowaste. German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety. https://www.bmu.de/themen/wasser-abfall-boden/abfallwirtschaft/statistiken/bioabfaelle/. Accessed 26 Aug 2020.

[56]

German Federal Statistical Office (2020) Abfallbilanz 2018. https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Umwelt/Abfallwirtschaft/Publikationen/Downloads-Abfallwirtschaft/abfallbilanz-pdf-5321001.pdf?__blob=publicationFile. Accessed 26 Aug 2020

[57]

Girisuta B, Danon B, Manurung R, Janssen LPBM, Heeres HJ. Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid. Biores Technol, 2008, 99(17): 8367-8375.

[58]

Gu B, Wang H, Chen Z, Jiang S, Zhu W, Liu M, Chen Y, Wu Y, He S, Cheng R, Yang J, Bi J. Characterization, quantification and management of household solid waste: a case study in China. Resour Conserv Recycl, 2015, 98: 67-75.

[59]

Gunnarsson IB, Kuglarz M, Karakashev D, Angelidaki I. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.). Biores Technol, 2015, 182: 58-66.

[60]

Guo S, Dong X, Liu K, Yu H, Zhu C. Chemical, energetic and structural characteristics of hydrothermal carbonization solid products for lawn grass. BioResources, 2015

[61]

Gutiérrez A, Rencoret J, Cadena EM, Rico A, Barth D, del Río JC, Martínez AT. Demonstration of laccase-based removal of lignin from wood and non-wood plant feedstocks. Biores Technol, 2012, 119: 114-122.

[62]

Hanc A, Novak P, Dvorak M, Habart J, Svehla P. Composition and parameters of household bio-waste in four seasons. Waste Manag, 2011, 31(7): 1450-1460.

[63]

Hendriks ATWM, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Biores Technol, 2009, 100(1): 10-18.

[64]

Herrmann C, Prochnow A, Heiermann M, Idler C. Biomass from landscape management of grassland used for biogas production: effects of harvest date and silage additives on feedstock quality and methane yield. Grass Forage Sci, 2014, 69(4): 549-566.

[65]

Holtzapple MT, Jun J-H, Ashok G, Patibandla SL, Dale BE. The ammonia freeze explosion (AFEX) process: a practical Lignocellulose Pretreatment. Appl Biochem Biotechnol, 1991, 28: 59-74.

[66]

Hoover A, Emerson R, Williams CL, Ramirez-Corredores MM, Ray A, Schaller K, Hernandez S, Li C, Walton M. Grading herbaceous biomass for biorefineries: a case study based on chemical composition and biochemical conversion. Bioenerg Res, 2019, 12(4): 977-991.

[67]

Huang K, Fasahati P, Maravelias CT. System-level analysis of lignin valorization in lignocellulosic biorefineries. iScience, 2020, 23(1): 100751.

[68]

Imteyaz Alam M, De S, Dutta S, Saha B. Solid-acid and ionic-liquid catalyzed one-pot transformation of biorenewable substrates into a platform chemical and a promising biofuel. RSC Adv, 2012, 2(17): 6890.

[69]

Inghels D, Dullaert W, Bloemhof J. A model for improving sustainable green waste recovery. Resour Conserv Recycl, 2016, 110: 61-73.

[70]

Jain D, Kanungo J, Tripathi SK. Enhancement in performance of supercapacitor using eucalyptus leaves derived activated carbon electrode with CH3COONa and HQ electrolytes: a step towards environment benign supercapacitor. J Alloy Compd, 2020, 832: 154956.

[71]

Johansson DJA, Azar C. A scenario based analysis of land competition between food and bioenergy production in the US. Clim Change, 2007, 82(3–4): 267-291.

[72]

Jönsson LJ, Palmqvist E, Nilvebrant N-O, Hahn-Hägerdal B. Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor. Appl Microbiol Biotechnol, 1998, 49: 691-697.

[73]

Jönsson LJ, Alriksson B, Nilvebrant N-O. Bioconversion of lignocellulose—inhibitors and detoxification. Biotechnol Biofuels, 2013, 6(1): 16.

[74]

Juneja A, Kumar D, Williams JD, Wysocki DJ, Murthy GS. Potential for ethanol production from conservation reserve program lands in Oregon. J Renew Sustain Energy, 2011, 3(6): 63102.

[75]

Jung S-J, Kim S-H, Chung I-M. Comparison of lignin, cellulose, and hemicellulose contents for biofuels utilization among 4 types of lignocellulosic crops. Biomass Bioenerg, 2015, 83: 322-327.

[76]

Jusri NAA, Azizan A, Ibrahim N, Mohd Salleh R, Abd Rahman MF (2018) Pretreatment of cellulose by electron beam irradiation method. In: IOP conference series: materials science and. engineering, vol 358, p 12006. Doi: https://doi.org/10.1088/1757-899X/358/1/012006.

[77]

Kambo HS, Dutta A. Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization. Appl Energy, 2014, 135: 182-191.

[78]

Kambo HS, Dutta A. Comparative evaluation of torrefaction and hydrothermal carbonization of lignocellulosic biomass for the production of solid biofuel. Energy Convers Manage, 2015, 105: 746-755.

[79]

Karapatsia A, Pappas I, Penloglou G, Kotrotsiou O, Kiparissides C. Optimization of dilute acid pretreatment and enzymatic hydrolysis of phalaris aquatica L. lignocellulosic biomass in batch and fed-batch processes. Bioenerg. Res., 2017, 10(1): 225-236.

[80]

Karlen SD, Fasahati P, Mazaheri M, Serate J, Smith RA, Sirobhushanam S, Chen M, Tymokhin VI, Cass CL, Liu S, Padmakshan D, Xie D, Zhang Y, McGee MA, Russell JD, Coon JJ, Kaeppler HF, de Leon N, Maravelias CT, Runge TM, Kaeppler SM, Sedbrook JC, Ralph J. Assessing the viability of recovery of hydroxycinnamic acids from lignocellulosic biorefinery alkaline pretreatment waste streams. Chemsuschem, 2020, 13(8): 2012-2024.

[81]

Kerem Z, Friesem D, Hadar Y. Lignocellulose degradation during solid-state fermentation—pleurotus ostreatus versus phanerochaete chrysosporium. Appl Environ Microbiol, 1992, 58(4): 1121-1127.

[82]

Kim D. Physico-chemical conversion of lignocellulose: inhibitor effects and detoxification strategies: a mini review. Molecules (Basel, Switzerland), 2018, 23(2): 309.

[83]

Kim Y, Kreke T, Mosier NS, Ladisch MR. Severity factor coefficients for subcritical liquid hot water pretreatment of hardwood chips. Biotechnol Bioeng, 2014, 111(2): 254-263.

[84]

Kim SM, Guo J, Kwak S, Jin Y-S, Lee DK, Singh V. Effects of genetic variation and growing condition of prairie cordgrass on feedstock composition and ethanol yield. Biores Technol, 2015, 183: 70-77.

[85]

Kolanowski Ł, Graś M, Bartkowiak M, Doczekalska B, Lota G. Electrochemical capacitors based on electrodes made of lignocellulosic waste materials. Waste Biomass Valor, 2020, 11(7): 3863-3871.

[86]

Koller M, Bona R, Hermann C, Horvat P, Martinz J, Neto J, Pereira L, Varila P, Braunegg G. Biotechnological production of poly(3-hydroxybutyrate) with Wautersia eutropha by application of green grass juice and silage juice as additional complex substrates. Biocatal Biotransform, 2005, 23(5): 329-337.

[87]

Komilis DP, Ham RK. The effect of lignin and sugars to the aerobic decomposition of solid wastes. Waste Manage, 2003, 23(5): 419-423.

[88]

Krieg T, Sydow A, Schröder U, Schrader J, Holtmann D. Reactor concepts for bioelectrochemical syntheses and energy conversion. Trends Biotechnol, 2014, 32(12): 645-655.

[89]

Kucharska K, Rybarczyk P, Hołowacz I, Łukajtis R, Glinka M, Kamiński M. Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules (Basel, Switzerland), 2018, 23(11): 2937.

[90]

Kuglarz M, Rom M. Influence of carbon dioxide and nitrogen source on sustainable production of succinic acid from miscanthus hydrolysates. IJESD, 2019, 10(11): 362-367.

[91]

Kumar D, Murthy GS. Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnol Biofuels, 2011, 4: 27.

[92]

Kumar P, Barrett DM, Delwiche MJ, Stroeve P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res, 2009, 48(8): 3713-3729.

[93]

La Cour R, Schjoerring JK, Jørgensen H. Enhancing protein recovery in green biorefineries by lignosulfonate-assisted precipitation. Front Sustain Food Syst, 2019, 3: 112.

[94]

Lee JM, Venditti RA, Jameel H, Kenealy WR. Detoxification of woody hydrolyzates with activated carbon for bioconversion to ethanol by the thermophilic anaerobic bacterium Thermoanaerobacterium saccharolyticum. Biomass Bioenerg, 2011, 35(1): 626-636.

[95]

Leiß S, Venus J, Kamm B. Fermentative Production of L-Lysine-L-lactate with fractionated press juices from the green biorefinery. Chem Eng Technol, 2010, 33(12): 2102-2105.

[96]

Li H, Qu Y, Yang Y, Chang S, Xu J. Microwave irradiation–a green and efficient way to pretreat biomass. Biores Technol, 2016, 199: 34-41.

[97]

Licari A, Monlau F, Solhy A, Buche P, Barakat A. Comparison of various milling modes combined to the enzymatic hydrolysis of lignocellulosic biomass for bioenergy production: glucose yield and energy efficiency. Energy, 2016, 102: 335-342.

[98]

Lin SY. Methods in lignin chemistry, 1992, Berlin, Heidelberg: Springer.

[99]

Liu Z, Quek A, Kent Hoekman S, Balasubramanian R. Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel, 2013, 103: 943-949.

[100]

Lu H, Zhao XS. Biomass-derived carbon electrode materials for supercapacitors. Sustain Energy Fuels, 2017, 1(6): 1265-1281.

[101]

Mandalika A, Runge T. Enabling integrated biorefineries through high-yield conversion of fractionated pentosans into furfural. Green Chem., 2012, 14(11): 3175.

[102]

M'Arimi MM, Mecha CA, Kiprop AK, Ramkat R. Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: review. Renew Sustain Energy Rev, 2020, 121: 109669.

[103]

Martín M, Grossmann IE. Optimal production of furfural and DMF from algae and switchgrass. Ind Eng Chem Res, 2016, 55(12): 3192-3202.

[104]

Martinez A, Rodriguez ME, York SW, Preston JF, Ingram LO. Effects of Ca(OH)2 treatments (“overliming”) on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnol Bioeng, 2000, 69(5): 526-536.

[105]

Mashingo MSH, Kellogg DW, Coblentz WK, Anschutz KS. Effect of harvest dates on yield nutritive value of Eastern Gamagrass. Prof Anim Sci, 2008, 24(4): 363-373.

[106]

Mast B, Zöhrens N, Schmidl F, Hernandez R, French WT, Merkt N, Claupein W, Graeff-Hönninger S. Lipid Production for microbial biodiesel by the oleagenious yeast rhodotorula glutinis using hydrolysates of wheat straw and miscanthus as carbon sources. Waste Biomass Valor, 2014, 5(6): 955-962.

[107]

Medick J, Teichmann I, Kemfert C. Hydrothermal carbonization (HTC) of green waste: an environmental and economic assessment of HTC coal in the metropolitan Region of Berlin Germany. SSRN J, 2017

[108]

Menegol D, Scholl AL, Dillon AJP, Camassola M. Influence of different chemical pretreatments of elephant grass (Pennisetum purpureum, Schum.) used as a substrate for cellulase and xylanase production in submerged cultivation. Bioprocess Biosyst Eng, 2016, 39(9): 1455-1464.

[109]

Meng S, Mo Z, Li Z, Guo R, Liu N. Oxygen-rich porous carbons derived from alfalfa flowers for high performance supercapacitors. Mater Chem Phys, 2020, 246: 122830.

[110]

Mes-Hartree M, Dale BE, Craig WK. Comparison of steam and ammonia pretreatment for enzymatic hydrolysis of cellulose. Appl Microbiol Biotechnol, 1988, 29: 462-468.

[111]

Mohapatra S, Mishra C, Behera SS, Thatoi H. Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass—a review. Renew Sustain Energy Rev, 2017, 78: 1007-1032.

[112]

Neeru C, Chandrajit B, Vidyasagar J. Biological production of xylitol from corn husk and switchgrass by pichia stiptis. Res J Chem Sci, 2013, 3: 58-64.

[113]

Overend RP, Chornet E. Fractionation of lignocellulosics by steam-aqueous pretreatments. Phil Trans R Soc Lond, 1987, 321: 523-536.

[114]

Palmqvist E, Almeida JS, Hahn-Hägerdal B. Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Biotechnol Bioeng, 1999, 62(4): 447-454.

[115]

Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Biores Technol, 2000, 74(1): 25-33.

[116]

Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysate. I: inhibition and detoxification. Biores Technol, 2000, 74: 17-24.

[117]

Palmqvist E, Hahn-Hägerdal B, Szengyel Z, Zacchi G, Rèczey K. Simultaneous detoxification and enzyme production of hemicellulose hydrolysates obtained after steam pretreatment. Enzyme Microb Technol, 1997, 20: 286-293.

[118]

Papendiek F, Venus J. Cultivation and fractionation of leguminous biomass for lactic acid production. Chem Biochem Eng Q, 2014, 28(3): 375-382.

[119]

Payne CE, Wolfrum EJ. Rapid analysis of composition and reactivity in cellulosic biomass feedstocks with near-infrared spectroscopy. Biotechnol Biofuels, 2015, 8: 43.

[120]

Pérez J, Muñoz-Dorado J, de La Rubia T, Martínez J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol, 2002, 5(2): 53-63.

[121]

Peterson AA, Vogel F, Lachance RP, Fröling M, Antal JMJ, Tester JW. Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ Sci, 2008, 1(1): 32.

[122]

Pihlajaniemi V, Ellilä S, Poikkimäki S, Nappa M, Rinne M, Lantto R, Siika-aho M. Comparison of pretreatments and cost-optimization of enzymatic hydrolysis for production of single cell protein from grass silage fibre. Biores Technol Rep, 2020, 9: y100357.

[123]

Pirie NW. Green leaves as a source of proteins and other nutrients. Nature, 1942, 3774: 251.

[124]

Pirie NW. The production and use of leaf protein. Proc Nutr Soc, 1969, 28(1): 85-91.

[125]

Prawitwong P, Waeonukul R, Tachaapaikoon C, Pason P, Ratanakhanokchai K, Denk L, Sermsathanaswadi J, Septiningrum K, Mori Y, Kosugi A. Direct glucose production from lignocellulose using Clostridium thermocellum cultures supplemented with a thermostable β-glucosidase. Biotechnol Biofuels, 2013, 6(1): 184.

[126]

Premjet S, Pumira B, Premjet D. Determining the potential of inedible weed biomass for bio-energy and ethanol production. BioResources, 2012

[127]

Rabemanolontsoa H, Saka S. Various pretreatments of lignocellulosics. Biores Technol, 2016, 199: 83-91.

[128]

Raspolli Galletti AM, Antonetti C, de Luise V, Licursi D, Nassi N. Levulinic acid production from waste biomass. BioResources, 2012

[129]

Raspolli Galletti AM, Antonetti C, Ribechini E, Colombini MP, Di Nassi O, Nasso N, Bonari E. From giant reed to levulinic acid and gamma-valerolactone: a high yield catalytic route to valeric biofuels. Appl Energy, 2013, 102: 157-162.

[130]

Remsing RC, Swatloski RP, Rogers RD, Moyna G. Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems. Chem Commun (Camb), 2006, 12: 1271-1273.

[131]

Reza MT, Lynam JG, Vasquez VR, Coronella CJ. Pelletization of biochar from hydrothermally carbonized wood. Environ Prog Sustain Energy, 2012, 31(2): 225-234.

[132]

Reza MT, Lynam JG, Uddin MH, Coronella CJ. Hydrothermal carbonization: fate of inorganics. Biomass Bioenerg, 2013, 49: 86-94.

[133]

Reza MT, Andert J, Wirth B, Busch D, Pielert J, Lynam JG, Mumme J. Hydrothermal carbonization of biomass for energy and crop production. Appl Bioenerg, 2014

[134]

Rezende CA, Atta BW, Breitkreitz MC, Simister R, Gomez LD, McQueen-Mason SJ. Optimization of biomass pretreatments using fractional factorial experimental design. Biotechnol Biofuels, 2018, 11: 206.

[135]

Rivas S, Vila C, Alonso JL, Santos V, Parajó JC, Leahy JJ. Biorefinery processes for the valorization of Miscanthus polysaccharides: from constituent sugars to platform chemicals. Ind Crops Prod, 2019, 134: 309-317.

[136]

Rollin JA, Zhu Z, Sathitsuksanoh N, Zhang Y-HP. Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol Bioeng, 2011, 108(1): 22-30.

[137]

Ruiz HA, Hedegaard Thomsen M, Trajano HL. Hydrothermal processing in biorefineries, 2017, Cham: Springer International Publishing.

[138]

Sadaka S, Sharara M, Ashworth A, Keyser P, Allen F, Wright A. Characterization of biochar from switchgrass carbonization. Energies, 2014, 7(2): 548-567.

[139]

Salvachúa D, Karp EM, Nimlos CT, Vardon DR, Beckham GT. Towards lignin consolidated bioprocessing: simultaneous lignin depolymerization and product generation by bacteria. Green Chem, 2015, 17(11): 4951-4967.

[140]

Saning A, Herou S, Dechtrirat D, Ieosakulrat C, Pakawatpanurut P, Kaowphong S, Thanachayanont C, Titirici M-M, Chuenchom L. Green and sustainable zero-waste conversion of water hyacinth (Eichhornia crassipes) into superior magnetic carbon composite adsorbents and supercapacitor electrodes. RSC Adv., 2019, 9(42): 24248-24258.

[141]

Sannigrahi P, Kim DH, Jung S, Ragauskas A. Pseudo-lignin and pretreatment chemistry. Energy Environ Sci, 2011, 4(4): 1306-1310.

[142]

Santamaria-Fernandez M, Ytting NK, Lübeck M, Uellendahl H. Potential nutrient recovery in a green biorefinery for production of feed, fuel and fertilizer for organic farming. Waste Biomass Valor, 2020, 11(11): 5901-5911.

[143]

Sawatdeenarunat C, Surendra KC, Takara D, Oechsner H, Khanal SK. Anaerobic digestion of lignocellulosic biomass: challenges and opportunities. Biores Technol, 2015, 178: 178-186.

[144]

Schmetz Q, Teramura H, Morita K, Oshima T, Richel A, Ogino C, Kondo A. Versatility of a dilute acid/butanol pretreatment investigated on various lignocellulosic biomasses to produce lignin, monosaccharides and cellulose in distinct phases. ACS Sustain Chem Eng, 2019, 7(13): 11069-11079.

[145]

Scholl AL, Menegol D, Pitarelo AP, Fontana RC, Zandoná Filho A, Ramos LP, Dillon AJP, Camassola M. Ethanol production from sugars obtained during enzymatic hydrolysis of elephant grass (Pennisetum purpureum, Schum.) pretreated by steam explosion. Biores Technol, 2015, 192: 228-237.

[146]

Schwarz D, Dörrstein J, Kugler S, Schieder D, Zollfrank C, Sieber V. Integrated biorefinery concept for grass silage using a combination of adapted pulping methods for advanced saccharification and extraction of lignin. Biores Technol, 2016, 216: 462-470.

[147]

Shao Y, Long Y, Wang H, Liu D, Shen D, Chen T. Hydrochar derived from green waste by microwave hydrothermal carbonization. Renew Energy, 2019, 135: 1327-1334.

[148]

Sieker T, Neuner A, Dimitrova D, Tippkötter N, Muffler K, Bart H-J, Heinzle E, Ulber R. Ethanol production from grass silage by simultaneous pretreatment, saccharification and fermentation: first steps in the process development. Eng Life Sci, 2011, 11(4): 436-442.

[149]

Sindhu R, Binod P, Pandey A. Biological pretreatment of lignocellulosic biomass-an overview. Biores Technol, 2016, 199: 76-82.

[150]

Sivertsen B. Air pollution impacts from open air burning. Waste Manag Environ III, 2006

[151]

Smith EL, Abbott AP, Ryder KS. Deep eutectic solvents (DESs) and their applications. Chem Rev, 2014, 114(21): 11060-11082.

[152]

Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, Keasling JD. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature, 2010, 463(7280): 559-562.

[153]

Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Biores Technol, 2002, 83: 1-11.

[154]

Taherzadeh MJ, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci, 2008, 9(9): 1621-1651.

[155]

Tanpichai S, Biswas SK, Witayakran S, Yano H. Water hyacinth: a sustainable lignin-poor cellulose source for the production of cellulose nanofibers. ACS Sustain Chem Eng, 2019, 7(23): 18884-18893.

[156]

Tatijarern P, Prasertwasu S, Komalwanich T, Chaisuwan T, Luengnaruemitchai A, Wongkasemjit S. Capability of Thai Mission grass (Pennisetum polystachyon) as a new weedy lignocellulosic feedstock for production of monomeric sugar. Biores Technol, 2013, 143: 423-430.

[157]

Ventorino V, Robertiello A, Viscardi S, Ambrosanio A, Faraco V, Pepe O. Bio-based chemical production from arundo donax feedstock fermentation using cosenzaea myxofaciens BPM1. BioResources, 2016

[158]

Ventorino V, Robertiello A, Cimini D, Argenzio O, Schiraldi C, Montella S, Faraco V, Ambrosanio A, Viscardi S, Pepe O. Bio-based succinate production from arundo donax hydrolysate with the new natural succinic acid-producing strain basfia succiniciproducens BPP7. Bioenerg Res, 2017, 10(2): 488-498.

[159]

Wan G, Zhang Q, Li M, Jia Z, Guo C, Luo B, Wang S, Min D. How pseudo-lignin is generated during dilute sulfuric acid pretreatment. J Agricult Food Chem, 2019, 67(36): 10116-10125.

[160]

Werpy T, Petersen G (2004) Top value added chemicals from biomass: Volume I — results of screening for potential candidates from sugars and synthesis gas. Technical Report. United States. https://doi.org/10.2172/15008859

[161]

West TP. Xylitol production by Candida species grown on a grass hydrolysate. World J Microbiol Biotechnol, 2009, 25(5): 913-916.

[162]

Wilson JJ, Deschatelets L, Nishikawa NK. Comparative fermentability of enzymatic and acid hydrolysates of steam-pretreated aspenwood hemicellulose by Pichia stipitis CBS 5776. Appl Microbiol Biotechnol, 1989, 31: 592-596.

[163]

Wolfrum EJ, Ness RM, Nagle NJ, Peterson DJ, Scarlata CJ. A laboratory-scale pretreatment and hydrolysis assay for determination of reactivity in cellulosic biomass feedstocks. Biotechnol Biofuels, 2013, 6(1): 162.

[164]

Wongwatanapaiboon J, Kangvansaichol K, Burapatana V, Inochanon R, Winayanuwattikun P, Yongvanich T, Chulalaksananukul W. The potential of cellulosic ethanol production from grasses in Thailand. J Biomed Biotechnol, 2012, 2012: 303748.

[165]

Wyman CE. Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals, 2013, Chichester, West Sussex: Wiley

[166]

Wyman CE, Balan V, Dale BE, Elander RT, Falls M, Hames B, Holtzapple MT, Ladisch MR, Lee YY, Mosier N, Pallapolu VR, Shi J, Thomas SR, Warner RE. Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar yields from different switchgrass sources. Biores Technol, 2011, 102(24): 11052-11062.

[167]

Xu J, Cheng JJ, Sharma-Shivappa RR, Burns JC. Sodium hydroxide pretreatment of switchgrass for ethanol production. Energy Fuels, 2010, 24(3): 2113-2119.

[168]

Yan W, Hastings JT, Acharjee TC, Coronella CJ, Vásquez VR. Mass and energy balances of wet torrefaction of lignocellulosic biomass †. Energy Fuels, 2010, 24(9): 4738-4742.

[169]

Yang B, Wyman CE. Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Bioref, 2008, 2(1): 26-40.

[170]

Yang W, Chen S. Biomass-derived carbon for electrode fabrication in microbial fuel cells: a review. Ind Eng Chem Res, 2020, 59(14): 6391-6404.

[171]

Yang Y, Hu C-W, Abu-Omar MM. Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using AlCl 3 ·6H2O catalyst in a biphasic solvent system. Green Chem, 2012, 14(2): 509-513.

[172]

Yoon HH, Wu ZW, Lee YY. The ammonia freeze explosion (AFEX) process. Appl Biochem Biotechnol, 1991, 28/29: 59-74.

[173]

Yu Q, Liu J, Zhuang X, Yuan Z, Wang W, Qi W, Wang Q, Tan X, Kong X. Liquid hot water pretreatment of energy grasses and its influence of physico-chemical changes on enzymatic digestibility. Biores Technol, 2016, 199: 265-270.

[174]

Yu Q, Qin L, Liu Y, Sun Y, Xu H, Wang Z, Yuan Z. In situ deep eutectic solvent pretreatment to improve lignin removal from garden wastes and enhance production of bio-methane and microbial lipids. Biores Technol, 2019, 271: 210-217.

[175]

Zeymer M, Meisel K, Clemens A, Klemm M. Technical, economic, and environmental assessment of the hydrothermal carbonization of green waste. Chem Eng Technol, 2017, 40(2): 260-269.

[176]

Zhang Y, Ezeji TC. Elucidating and alleviating impacts of lignocellulose-derived microbial inhibitors on Clostridium beijerinckii during fermentation of Miscanthus giganteus to butanol. J Ind Microbiol Biotechnol, 2014, 41(10): 1505-1516.

[177]

Zhang L, Sun X. Effects of rhamnolipid and initial compost particle size on the two-stage composting of green waste. Biores Technol, 2014, 163: 112-122.

[178]

Zhang L, Sun X. Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste. Waste manage, 2016, 48: 115-126.

[179]

Zhang L, Sun X, Tian Y, Gong X. Effects of brown sugar and calcium superphosphate on the secondary fermentation of green waste. Biores Technol, 2013, 131: 68-75.

[180]

Zhang Z, Du B, Quan Z-J, Da Y-X, Wang X-C. Dehydration of biomass to furfural catalyzed by reusable polymer bound sulfonic acid (PEG-OSO3H) in ionic liquid. Catal Sci Technol, 2014, 4(3): 633.

[181]

Zhang Y, Li T, Shen Y, Wang L, Zhang H, Qian H, Qi X. Preparation, statistical optimization and characterization of poly(3-hydroxybutyrate) fermented by Cupriavidus necator utilizing various hydrolysates of alligator weed (Alternanthera philoxeroides) as a sole carbon source. Biotechnol Prog, 2020, 36(4): e2992.

[182]

Zhao J, Ouyang Z, Zheng H, Zhou W, Wang X, Xu W, Ni Y. Plant species composition in green spaces within the built-up areas of Beijing. China Plant Ecol, 2010, 209(2): 189-204.

Funding

Bundesministerium für Bildung und Forschung(031B0903B)

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/