Modeling bikaverin production by Fusarium oxysporum CCT7620 in shake flask cultures

Marcela Colombo dos Santos , Mayra de Lima Mendonça , Juliano Lemos Bicas

Bioresources and Bioprocessing ›› 2020, Vol. 7 ›› Issue (1) : 13

PDF
Bioresources and Bioprocessing ›› 2020, Vol. 7 ›› Issue (1) : 13 DOI: 10.1186/s40643-020-0301-5
Research

Modeling bikaverin production by Fusarium oxysporum CCT7620 in shake flask cultures

Author information +
History +
PDF

Abstract

Bikaverin is a fungal red pigment that presents antimicrobial and antitumor activities. Therefore, this substance could be used as an alternative additive in the food and pharmaceutical industries. The aim of this work was to use response surface methodology to optimize the fermentation conditions and maximize the production of bikaverin in shake flasks. The variables investigated were agitation speed (71–289 rpm), temperature (21–35 °C), and substrate (rice) concentration in the culture medium (16.4–83.6 g/L). The agitation speed had a positive effect on red pigment production, while substrate concentration and temperature had the opposite effect. Maximum bikaverin production was predicted to occur using 289 rpm, 24.3 °C, and 16.4 g/L rice concentration. Experimental validation using 289 rpm, 28 °C, and 20 g/L rice concentration was 6.2% higher than predicted by the model. The present investigation was important for defining the best conditions for the production of bikaverin.

Keywords

Fusarium oxysporum / Bikaverin / Fungal pigment / Submerged cultures / Red pigment

Cite this article

Download citation ▾
Marcela Colombo dos Santos, Mayra de Lima Mendonça, Juliano Lemos Bicas. Modeling bikaverin production by Fusarium oxysporum CCT7620 in shake flask cultures. Bioresources and Bioprocessing, 2020, 7(1): 13 DOI:10.1186/s40643-020-0301-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahmad MN, Holland CR, Mckay G. Mass transfer studies in batch fermentation: mixing characteristics. J Food Eng, 1994, 23: 145-158.

[2]

Akilandeswari P, Pradeep BV. Exploration of industrially important pigments from soil fungi. Appl Microbiol Biotechnol, 2016, 100: 1631-1643.

[3]

Avalos J, Fernández-Martín R, Prado MM, . López C, Alonso JE, . Biosíntesis de giberelinas, bikaverina y carotenoides en Gibberella fujikuroi. Biotecnología y aplicaciones de microorganismos pigmentados, 1999, Coruña: Universidade da Coruña, 169-188.

[4]

Balan J, Fuska J, Kuhr I, Kuhrová V. Bikaverin, an antibiotic from Gibberella fujikuroi, effective against Leishmania brasiliensis. Folia Microbiol (Praha), 1970, 15: 479-484.

[5]

Bell AA, Wheeler MH, Liu J, . United States department of agriculture—agricultural research service studies on polyketide toxins of Fusarium oxysporum f sp vasinfectum: potential targets for disease control. Pest Manag Sci, 2003, 59: 736-747.

[6]

Brewer D, Arsenault GP. Production of bikaverin by Fusarium oxysporum and its identity with lycopersin. J Antibiot Antibiot, 1973, 26: 778-781.

[7]

Chávez-Parga MDC, González-Ortega O, Sánchez-Cornejo G, . Mathematical description of bikaverin production in a fluidized bed bioreactor. World J Microbiol Biotechnol, 2005, 21: 683-688.

[8]

Cornforth W, Robinson PM, Ireland N. Isolation and characterization of a fungal vacuolation factor (bikaverin). J Chem Soc, 1971, 16: 2786-2788.

[9]

Deshmukh R, Mathew A, Purohit HJ. Characterization of antibacterial activity of bikaverin from Fusarium sp. HKF15. J Biosci Bioeng, 2014, 117: 443-448.

[10]

Dufossé L, Galaup P, Yaron A, . Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality?. Trends Food Sci Technol, 2005, 16: 389-406.

[11]

Escamilla-Silva E, Poggi-Varaldo H, Mayra M, . Selective production of bikaverin in a fluidized bioreactor with immobilized Gibberella fujikuroi. World J Microbiol Biotechnol, 2001, 17: 469-474.

[12]

Fuska J, Proksa B, Fuskova A. New potential cytotoxic and antitumor substances. I. In vitro effect of bikaverin and its derivatives on cells of certain tumors. Neoplasma, 1975, 22: 335-338.

[13]

Giordano W, Domenech CE. Aeration affects acetate destination in Gibberella fujikuroi. FEMS Microbiol Lett, 1999, 180: 111-116.

[14]

Giordano W, Avalos J, Cerdá-Olmedo E, Domenech CE. Nitrogen availability and production of bikaverin and gibberellins in Gibberella fujikuroi. FEMS Microbiol Lett, 1999, 173: 389-393.

[15]

Gupta VK, Misra AK, Gaur RK. Growth characteristics of Fusarium spp. causing wilt disease in Psidium guajava L. in India. J Plant Prot Res, 2010, 50: 452-462.

[16]

Haidar S, Aichele D, Birus R, . In vitro and in silico evaluation of bikaverin as a potent inhibitor of human protein kinase CK2. Molecules, 2019, 24: 1-16.

[17]

Hertweck C. The biosynthetic logic of polyketide diversity. Angew Chemie Int Ed, 2009, 48: 4688-4716.

[18]

Kongruang S. Growth kinetics of biopigment production by Thai isolated Monascus purpureus in a stirred tank bioreactor. J Ind Microbiol Biotechnol, 2011, 38: 93-99.

[19]

Kwon HR, Son SW, Han HR, . Nematicidal activity of bikaverin and fusaric acid isolated from Fusarium oxysporum against pine wood nematode, Bursaphelenchus xylophilus. Plant Pathol J, 2007, 23: 318-321.

[20]

Lale GJ, Gadre RV. Production of bikaverin by a Fusarium fujikuroi mutant in submerged cultures. AMB Express, 2016, 6: 34.

[21]

Lamers PP, Janssen M, De Vos RCH, . Exploring and exploiting carotenoid accumulation in Dunaliella salina for cell-factory applications. Trends Biotechnol, 2008, 26: 631-638.

[22]

Li E, Mira De Orduña R. A rapid method for the determination of microbial biomass by dry weight using a moisture analyser with an infrared heating source and an analytical balance. Lett Appl Microbiol, 2010, 50: 283-288.

[23]

Limón MC, Rodríguez-Ortiz R, Avalos J. Bikaverin production and applications. Appl Microbiol Biotechnol, 2010, 87: 21-29.

[24]

Linnemannstöns P, Schulte J, Del Mar Prado M, . The polyketide synthase gene pks4 from Gibberella fujikuroi encodes a key enzyme in the biosynthesis of the red pigment bikaverin. Fungal Genet Biol, 2002, 37: 134-148.

[25]

McInnes AG, Walter JA, Smith DG. Biosynthesis of bikaverin in Fusarium oxysporum. J Antibiot (Tokyo), 1976, 29: 1050-1057.

[26]

Medentsev AG, Akimenko VK. Naphthoquinone metabolites of the fungi. Phytochemistry, 1998, 47: 935-959.

[27]

Medentsev AG, Arinbasarova AY, Akimenko VK. Biosynthesis of naphthoquinone pigments by fungi of the genus Fusarium. Appl Biochem Microbiol, 2005, 41: 573-577.

[28]

Norred W, Plattner R, Vesonder RF, . Effects of selected secondary metabolites of Fusarium moniliforme on unscheduled synthesis of DNA by rat primary hepatocytes. Food Chem Toxicol, 1992, 30: 233-237.

[29]

Ogbonna CN. Production of food colourants by filamentous fungi. African J Microbiol Res, 2016, 10: 960-971.

[30]

Pradeep FS, Pradeep BV. Optimization of pigment and biomass production from Fusarium moniliforme under submerged fermentation conditions. Int J Pharm Pharm Sci, 2013, 5: 526-535.

[31]

Rodríguez-Ortiz R, Mehta BJ, Avalos J, Limón MC. Stimulation of bikaverin production by sucrose and by salt starvation in Fusarium fujikuroi. Appl Microbiol Biotechnol, 2010, 85: 1991-2000.

[32]

Saha P, Chowdhury S, Gupta S, Kumar I. Insight into adsorption equilibrium, kinetics and thermodynamics of Malachite Green onto clayey soil of Indian origin. Chem Eng J, 2010, 165: 874-882.

[33]

Silva WS (2013) Produção de pigmentos fúngico e seu uso no tingimento de tecidos. Dissertation, Federal University of São João Del-Rei

[34]

Sinha K, Das Saha P, Datta S. Response surface optimization and artificial neural network modeling of microwave assisted natural dye extraction from pomegranate rind. Ind Crops Prod, 2012, 37: 408-414.

[35]

Smith S, Tsai S-C. The type I fatty acid and polyketide synthases: a tale of two megasynthases. Nat Prod Rep, 2007, 24: 1041.

[36]

Son SW, Kim HY, Choi GJ, . Bikaverin and fusaric acid from Fusarium oxysporum show antioomycete activity against Phytophthora infestans. J Appl Microbiol, 2008, 104: 692-698.

[37]

Srivastava S, Sinha R, Roy D. Toxicological effects of malachite green. Aquat Toxicol, 2004, 66: 319-329.

[38]

Srivastava P, Srivastava S, Pathak N. Identification of limiting factors for the optimum growth of Fusarium oxysporum in liquid medium. Toxicol Int, 2011, 18: 111-116.

[39]

Stahmann KP, Arst HN, Althöfer H, . Riboflavin, overproduced during sporulation of Ashbya gossypii, protects its hyaline spores against ultraviolet light. Environ Microbiol, 2001, 3: 545-550.

[40]

Wiemann P, Willmann A, Straeten M, . Biosynthesis of the red pigment bikaverin in Fusarium fujikuroi: genes, their function and regulation. Mol Microbiol, 2009, 72: 931-946.

[41]

Yolmeh M, Habibi Najafi MB, Farhoosh R. Optimisation of ultrasound-assisted extraction of natural pigment from annatto seeds by response surface methodology (RSM). Food Chem, 2014, 155: 319-324.

[42]

Zhan J, Burns AM, Liu MX, . Search for cell motility and angiogenesis inhibitors with potential anticancer activity: beauvericin and other constituents of two endophytic strains of Fusarium oxysporum. J Nat Prod, 2007, 70: 227-232.

Funding

Conselho Nacional de Desenvolvimento Científico e Tecnológico(141368/2015-2)

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior(23038.000795/2018-61)

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/