A two-component system gene SACE_0101 regulates copper homeostasis in Saccharopolyspora erythraea

Lijia Qiao , Xiaobo Li , Xiang Ke , Ju Chu

Bioresources and Bioprocessing ›› 2020, Vol. 7 ›› Issue (1) : 12

PDF
Bioresources and Bioprocessing ›› 2020, Vol. 7 ›› Issue (1) : 12 DOI: 10.1186/s40643-020-0299-8
Research

A two-component system gene SACE_0101 regulates copper homeostasis in Saccharopolyspora erythraea

Author information +
History +
PDF

Abstract

Background

Saccharopolyspora erythraea (S. erythraea) is a Gram-positive bacterium widely used for the production of erythromycin, a potent macrolide antibiotic. However, the mechanism behind erythromycin production is poorly understood. In the high erythromycin-producer strain S. erythraea HL3168 E3, the level of copper ions positively correlates with erythromycin production. To explain this correlation, we performed a genome-based comparison between the wild-type strain NRRL23338 and the mutant strain HL3168 E3, and further characterized the identified gene(s) by targeted genome editing, mRNA transcript analysis, and functional analysis.

Results

The response regulator of the two-component system (TCS) encoded by the gene SACE_0101 in S. erythraea showed high similarity with CopR of TCS CopRS in Streptomyces coelicolor, which is involved in the regulation of copper metabolism. The deletion of SACE_0101 was beneficial for erythromycin synthesis most likely by causing changes in the intracellular copper homeostasis, leading to enhanced erythromycin production. In addition, Cu2+ supplementation and gene expression analysis suggested that SACE_0101 may be involved in the regulation of copper homeostasis and erythromycin production.

Conclusions

The mutation of SACE_0101 gene increased the yield of erythromycin, especially upon the addition of copper ions. Therefore, the two-component system gene SACE_0101 plays a crucial role in regulating copper homeostasis and erythromycin synthesis in S. erythraea.

Keywords

Copper homeostasis / Erythromycin production / Saccharopolyspora erythraea / Two-component system

Cite this article

Download citation ▾
Lijia Qiao, Xiaobo Li, Xiang Ke, Ju Chu. A two-component system gene SACE_0101 regulates copper homeostasis in Saccharopolyspora erythraea. Bioresources and Bioprocessing, 2020, 7(1): 12 DOI:10.1186/s40643-020-0299-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Altschul SF, Gish W, Miller W, Eugene W, Myers Lipman DJ. Basic local alignment search tool. J Mol Biol, 1990, 215: 403-410.

[2]

Bentley SD, Chater KF, Cerdeno-Tarraga A, . Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 2002, 417: 141-147.

[3]

Bijlsma JJE, Groisman EA. Making informed decisions: regulatory interactions between two-component systems. Trends Microbiol, 2003, 11: 359-366.

[4]

Carata E, Peano C, Tredici SM, . Phenotypes and gene expression profiles of Saccharopolyspora erythraea rifampicin-resistant (rif) mutants affected in erythromycin production. Microb Cell Fact, 2009, 8: 18.

[5]

Chaplin AK, Tan BG, Vijgenboom E, Chaplin AK, Tan BG, Vijgenboom E, Worrall JAR. Copper trafficking in the CsoR regulon of Streptomyces lividans. Metallomics, 2015, 7(1): 145-155.

[6]

Couronne O, Poliakov A, Bray N, Ishkhanov T, Ryaboy D, Rubin E, Pachter L, Dubchak I. Strategies and tools for whole genome alignments. Genome Res, 2003, 13(1): 73-80.

[7]

Fujimoto M, Chijiwa M, Nishiyama T, Takano H, Ueda K. Developmental defect of cytochrome oxidase mutants of Streptomyces coelicolor A3(2). Microbiology, 2016, 162: 1446-1455.

[8]

González-Quiñónez N, Corte-Rodríguez M, . Cytosolic copper is a major modulator of germination, development and secondary metabolism in Streptomyces coelicolor. Sci Rep, 2019, 9(1): 1-8.

[9]

Hodgson DA. Glucose repression of carbon source uptake in Streptomyces coelicolor A3(2) and its perturbation in mutants resistant to 2-deoxyglucose. J Gen Appl Microbiol, 1982, 128: 2417-2430.

[10]

Hopwood DA. Genetic manipulation of Streptomyces: a laboratory manual. Biochem Educ, 1985, 14(4): 196.

[11]

Hoshino N, Kimura T, Yamaji A, Ando T. Damage to the cytoplasmic membrane of Escherichia coli by catechin–copper (II) complexes. Free Radic Biol Med, 1999, 27: 1245-1250.

[12]

Hou YH, Li FC, Wang SJ, Qin S, Wang QF. Intergeneric conjugation in holomycin-producing marine Streptomyces sp. strain M09. Microbiol Res, 2008, 163: 96-104.

[13]

Joaquin GL, Luis LM, Jose CR, Francisco JF. The CopRS two-component system is responsible for resistance to copper in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol, 2012, 159: 1806-1818.

[14]

Li YY, Chang X, Yu WB, . Systems perspectives on erythromycin biosynthesis by comparative genomic and transcriptomic analyses of S. erythraea E3 and NRRL23338 strains. BMC Genom, 2013, 14: 523.

[15]

Liu Y, Ye RF, Zheng L, . Effect of n-propanol, copper ions and nicotinamide on the synthesis of erythromycin. J East China Univ Sci Technol, 2005, 06: 808-811.

[16]

Lu YH, Wang WH, Shu D, Zhang W, Chen L, Qin Z, Yang S, Jiang W. Characterization of a novel two-component regulatory system involved in the regulation of both actinorhodin and a type I polyketide in Streptomyces coelicolor. Appl Microbiol Biotechnol, 2007, 77: 625-635.

[17]

Marcellin E, Mercer TR, Licona CC, Palfreyman RW, Dinger ME, Steen JA, Mattick JS, Nielsen LK. Saccharopolyspora erythraea’s genome is organised in high-order transcriptional regions mediated by targeted degradation at the metabolic switch. BMC Genomics, 2013, 14: 15.

[18]

Mascher T, Helmann JD, Unden G. Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev, 2016, 70: 910-938.

[19]

Mauricio L, Felipe O, Angelica RJ, Guadalupe L, Mauricio G. CutC is induced late during copper exposure and can modify intracellular copper content in Enterococcus faecalis. Biochem Biophys Res Commun, 2011, 06: 633-637.

[20]

Oliynyk M, Samborskyy M, Lester JB, Mironenko T, Scott N, Dickens S, Haydock SF, Leadlay PF. Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nat Biotechnol, 2007, 25(4): 447-453.

[21]

Peano C, Talà A, Corti G, Pasanisi D, Durante M, Mita G, Bicciato S, Bellis GD, Alifano P. Comparative genomics and transcriptional profiles of Saccharopolyspora erythraea NRRL2338 and a classically improved erythromycin over-producing strain. Microb Cell Fact, 2012, 11: 32.

[22]

Rozas D, Gullon S, Mellado RP. A novel two-component system involved in the transition to secondary metabolism in Streptomyces coelicolor. PLoS ONE, 2012, 7: 1-10.

[23]

Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc, 2007, 3: 1101-1108.

[24]

Singh K, Senadheera DB, Cvitkovitch DG. An intimate link: two-component signal transduction systems and metal transport systems in bacteria. Fut Microbiol, 2014, 9(11): 1283-1293.

[25]

Solioz M, Abicht HK, Mermod M. Response of gram-positive bacteria to copper stress. J Biol Inorg Chem, 2010, 15(1): 3-14.

[26]

Worrall JAR, Vijgenboom E. Copper mining in Streptomyces: enzymes, natural products and development. Nat Prod Rep, 2010, 27(5): 742-756.

[27]

Yu L, Yan X, Wang L, Chu J, Zhuang Y, Zhang S, Guo M. Molecular cloning and functional characterization of an ATP-binding cassette transporter OtrC from Streptomyces rimosus. BMC Biotechnol, 2012, 12: 52.

[28]

Zou X, Hang HF, Chu J, Zhuang YP, Zhang SL. Enhancement of erythromycin A production with feeding available nitrogen sources in erythromycin biosynthesis phase. Biores Technol, 2009, 100: 3358-3365.

Funding

National Natural Science Foundation of China(21276081)

National Major Science and Technology Projects of China (CN)(2011ZX09203-001-03)

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/