Enhanced plumbagin production in Plumbago indica root culture by simultaneous and sequential dual elicitations using chitosan with ʟ-alanine and methyl-β-cyclodextrin

Amit Jaisi , Pharkphoom Panichayupakaranant

Bioresources and Bioprocessing ›› 2020, Vol. 7 ›› Issue (1) : 10

PDF
Bioresources and Bioprocessing ›› 2020, Vol. 7 ›› Issue (1) : 10 DOI: 10.1186/s40643-020-0298-9
Research

Enhanced plumbagin production in Plumbago indica root culture by simultaneous and sequential dual elicitations using chitosan with ʟ-alanine and methyl-β-cyclodextrin

Author information +
History +
PDF

Abstract

The simultaneous and sequential dual elicitation effect on plumbagin production in Plumbago indica L. root cultures, revealed that combination of chitosan (150 mg L−1) with ʟ-alanine (5 mM) or methyl-β-cyclodextrin (MCD; 2 mM) significantly increased plumbagin production, but in the different treatment manners. The simultaneous treatment using chitosan + ʟ-alanine on a 14-day-old culture enhanced plumbagin production to 14.62 mg g−1 DW, while the sequential additions of MCD to a 12-day-old culture followed by chitosan after 48 h enhanced production of plumbagin to 14.33 mg g−1 DW. The plumbagin productivity from both treatments were up to 1.3- and 8-fold higher than the chitosan treated (10.93 mg g−1 DW) and untreated root cultures (1.76 mg g−1 DW). Moreover, the present studies provided new information on the effect of simultaneous and sequential elicitation on plumbagin-producing P. indica root cultures using chitosan in combinations with MCD or ʟ-alanine.

Keywords

ʟ-Alanine / Chitosan / Dual elicitation / Methyl-β-cyclodextrin / Plumbagin / Plumbago indica

Cite this article

Download citation ▾
Amit Jaisi, Pharkphoom Panichayupakaranant. Enhanced plumbagin production in Plumbago indica root culture by simultaneous and sequential dual elicitations using chitosan with ʟ-alanine and methyl-β-cyclodextrin. Bioresources and Bioprocessing, 2020, 7(1): 10 DOI:10.1186/s40643-020-0298-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Almagro L, Belchí-Navarro S, Martínez-Márquez A, Bru R, Pedreño MA. Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and coronatine. Plant Physiol Biochem, 2015, 97: 361-367.

[2]

Baque MA, Shiragi MH, Lee EJ, Paek KY. Elicitor effect of chitosan and pectin on the biosynthesis of anthraquinones, phenolics and flavonoids in adventitious root suspension cultures of Morinda citrifolia (L.). Aust J Crop Sci, 2012, 6: 1349-1355.

[3]

Bhuiyan MNH, Adachi T. Stimulation of betacyanin synthesis through exogenous methyl jasmonate and other elicitors in suspension-cultured cells of Portulaca. J Plant Physiol, 2003, 160: 1117-1124.

[4]

Cai Z, Kastell A, Speiser C, Smetanska I. Enhanced resveratrol production in Vitis vinifera cell suspension cultures by heavy metals without loss of cell viability. Appl Biochem Biotechnol, 2013, 171: 330-340.

[5]

Chakraborty M, Karun A, Mitra A. Accumulation of phenylpropanoid derivatives in chitosan-induced cell suspension culture of Cocos nucifera. J Plant Physiol, 2009, 166: 63-71.

[6]

Cho HY, Son SY, Rhee HS, Yoon SYH, Lee-Parsons CW, Park JM. Synergistic effects of sequential treatment with methyl jasmonate, salicylic acid and yeast extract on benzophenanthridine alkaloid accumulation and protein expression in Eschscholtzia californica suspension cultures. J Biotechnol, 2008, 135: 117-122.

[7]

Galek H, Osswald WF, Elstner EF. Oxidative protein modification as predigestive mechanism of the carnivorous plant Dionaea muscipula: an hypothesis based on in vitro experiments. Free Radic Biol Med, 1990, 9: 427-434.

[8]

Gangopadhyay M, Dewanjee S, Bhattacharya S. Enhanced plumbagin production in elicited Plumbago indica hairy root cultures. J Biosci Bioeng, 2011, 111: 706-710.

[9]

Ge X, Wu J. Induction and potentiation of diterpenoid tanshinone accumulation in Salvia miltiorrhiza hairy roots by β-aminobutyric acid. Appl Microbiol Biotechnol, 2005, 68: 183-188.

[10]

Gonçalves S, Ferraz M, Romano A. Phytotoxic properties of Drosophyllum lusitanicum leaf extracts and its main compound plumbagin. Sci Hort, 2009, 122: 96-101.

[11]

Hahn MG, Albersheim P. Host-pathogen interactions. XIV. Isolation and partial characterization of an elicitor from yeast extract. Plant Physiol, 1978, 62: 107-111.

[12]

Iriti M, Faoro F. Chitosan as a MAMP, searching for a PRR. Plant Signal Behav, 2009, 4: 66-68.

[13]

Jaisi A, Sakunphueak A, Panichayupakaranant P. Increased production of plumbagin in Plumbago indica root cultures by gamma ray irradiation. Pharm Biol, 2013, 51: 1047-1051.

[14]

Jaisi A, Panichayupakaranant P. Increased production of plumbagin in Plumbago indica root cultures by biotic and abiotic elicitors. Biotechnol Lett, 2016, 38: 351-355.

[15]

Jaisi A, Panichayupakaranant P. Simultaneous heat shock and in situ adsorption enhance plumbagin production in Plumbago indica root cultures. Eng Life Sci, 2016, 16: 417-423.

[16]

Jaisi A, Panichayupakaranant P. Enhanced plumbagin production in Plumbago indica root cultures by ʟ-alanine feeding and in situ adsorption. Plant Cell Tiss Org Cult, 2016, 1: 53-60.

[17]

Jaisi A, Panichayupakaranant P. Chitosan elicitation and sequential Diaion® HP-20 addition a powerful approach for enhanced plumbagin production in Plumbago indica root cultures. Process Biochem, 2017, 53: 210-215.

[18]

Johnson TS, Ravishankar GA, Venkataraman LV. Elicitation of capsaicin production in freely suspended cells and immobilized cell cultures of Capsicum frutescens mill. Food Biotechnol, 1991, 5: 197-205.

[19]

Juengwatanatrakul T, Sakamoto S, Tanaka H, Putalun W. Elicitation effect on production of plumbagin in in vitro culture of Drosera indica L. J Med Plants Res, 2011, 5: 4949-4953.

[20]

Kaewbumrung S, Panichayupakaranant P. Isolation of three antibacterial naphthoquinones from Plumbago indica roots and development of a validated quantitative HPLC analytical method. Nat Prod Res, 2012, 26: 2020-2023.

[21]

Komaraiah P, Ramakrishna SV, Reddanna P, Kavi Kishor PB. Enhanced production of plumbagin in immobilized cells of Plumbago rosea by elicitation and in situ adsorption. J Biotechnol, 2003, 101: 181-187.

[22]

Mallavadhani UV, Sahu G, Muralidhar J. Screening of Plumbago species for the bio-active marker plumbagin. Pharm Biol, 2002, 40: 508-511.

[23]

Martin KP, Sabovljevic A, Madassery J. High-frequency transgenic plant regeneration and plumbagin production through methyl jasmonate elicitation from hairy roots of Plumbago indica L. J Crop Sci Biotech, 2011, 14: 205-212.

[24]

Nahálka J, Nahálková J, Gemeiner P, Blanárik P. Elicitation of plumbagin by chitin and its release into the medium in Drosophyllum lusitanicum Link. suspension cultures. Biotechnol Lett, 1998, 20: 841-845.

[25]

Panichayupakaranant P, Tewtrakul S. Plumbagin production by root cultures of Plumbago rosea. Electron J Biotechnol, 2002, 5: 228-232.

[26]

Perassolo M, Smith ME, Giulietti AM, Talou JR. Synergistic effect of methyl jasmonate and cyclodextrins on anthraquinone accumulation in cell suspension cultures of Morinda citrifolia and Rubia tinctorum. Plant Cell Tiss Org Cult, 2016, 124: 319-330.

[27]

Pourianezhad F, Rahnama H, Mousavi A, Khosrowshahli M, Mafakheri S. Parthenolide production in cell suspension culture of feverfew. Bioresour Bioprocess, 2019, 6: 23.

[28]

Putalun W, Udomsin O, Yusakul G, Juengwatanatrakul T, Sakamoto S, Tanaka H. Enhanced plumbagin production from in vitro cultures of Drosera burmannii using elicitation. Biotechnol Lett, 2010, 32: 721-724.

[29]

Raj G, Kurup R, Hussain AA, Baby S. Distribution of naphthoquinones, plumbagin, droserone, and 5-O-methyl droserone in chitin-induced and uninduced Nepenthes khasiana: molecular events in prey capture. J Exp Bot, 2011, 62: 5429-5436.

[30]

Rischer H, Hamm A, Bringmann G. Nepenthes insignis uses a C 2-portion of the carbon skeleton of ʟ-alanine acquired via its carnivorous organs, to build up the allelochemical plumbagin. Phytochemistry, 2002, 59: 603-609.

[31]

Sabater-Jara AB, Onrubia M, Moyano E, Bonfill M, Palazón J, Pedreño MA, Cusidó RM. Synergistic effect of cyclodextrins and methyl jasmonate on taxane production in Taxus x media cell cultures. Plant Biotechnol J, 2014, 12: 1075-1084.

[32]

Schweizer P, Buchala A, Silverman P, Seskar M, Raskin I, Metraux J-P. Jasmonate-inducible genes are activated in rice by pathogen attack without a concomitant increase in endogenous jasmonic acid levels. Plant Physiol, 1997, 114: 79-88.

[33]

Silja PK, Gisha GP, Satheeshkumar K. Enhanced plumbagin accumulation in embryogenic cell suspension cultures of Plumbago rosea L. following elicitation. Plant Cell Tiss Org Cult, 2014, 119: 469-477.

[34]

Vidal S, Leon I, Denecke J, Palva ET. Salicylic acid and the plant pathogen Erwinia carotovora induce defense genes via antagonistic pathways. Plant J, 1997, 11: 115-123.

[35]

Widhalm JR, Rhodes D. Biosynthesis and molecular actions of specialized 1, 4-naphthoquinone natural products produced by horticultural plants. Hort Res., 2016, 3: 1-7.

[36]

Xing K, Zhu X, Peng X, Qin S. Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agron Sustain Dev, 2015, 35: 569-588.

[37]

Zhao J, Zhu W, Hu Q. Effects of stress factors, bioregulators and synthetic precursor on indole alkaloid production in compact callus clusters cultures of Catharanthus roseus. Appl Microbiol Biotechnol, 2001, 55: 693-698.

[38]

Zhao J, Davis LC, Verpoorte R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv, 2005, 23: 283-333.

Funding

Prince of Songkla University

AI Summary AI Mindmap
PDF

182

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/