Digital technology dilemma: on unlocking the soil quality index conundrum
Vincent de Paul Obade , Charles Gaya
Bioresources and Bioprocessing ›› 2021, Vol. 8 ›› Issue (1) : 6
Digital technology dilemma: on unlocking the soil quality index conundrum
Knowledge of the interactions between soil systems, management practices, and climatic extremes are critical for prescription-based sustainable practices that reduce environmental pollution/footprints, disruption of food supply chains, food contamination, and thus improve socio-economic wellbeing. Soil quality status and dynamics under climate change present both a hazard which may not be remedied by simply adding chemicals or improved by crop varieties, and an opportunity (e.g., by indicating impact of a shift in land use) although the specifics remain debatable. This entry not only revisits the science of soil quality determination but also explicates on intricacies of monitoring using big data generated continuously and integrated using the “internet of things.” Indeed, relaying credible soil quality information especially for heterogeneous soils at field scale is constrained by challenges ranging from data artifacts and acquisition timing differences, vague baselines, validation challenges, scarcity of robust standard algorithms, and decision support tools. With the advent of digital technology, modern communication networks, and advancement in variable rate technologies (VRT), a new era has dawned for developing automated scalable and synthesized soil quality metrics. However, before digital technology becomes the routine tool for soil quality sensing and monitoring, there is need to understand the issues and concerns. This contribution not only exemplifies a unique application of digital technology to detect residue cover but also deliberates on the following questions: (1) is digital agriculture the missing link for integrating, understanding the interconnectivity, and ascertaining the provenance between soil quality, agronomic production, environmental health, and climate dynamics? and (2) what are the technological gaps?
Accuracy / Digital mapping / Soil quality / Spatial interpolation
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
de Paul Obade V (2011) Crop residue cover assessment using remotely sensed data. Plant Science Department, South Dakota State University |
| [24] |
|
| [25] |
|
| [26] |
de Paul Obade, V., Lal, R. 2014a. Soil quality evaluation under different land management practices. Environmental Earth Sciences, 1–19 |
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
Doran JW, Parkin TB (1994) Defining and assessing soil quality. Defining Soil Quality for a Sustainable Environment, (Eds.) J.W. Doran, D.C. Coleman, D.F. Bezdicek, B.A. Stewart, SSSA, Inc. Madison, Wisconsin, USA |
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
Lal R (2020) Home gardening and urban agriculture for advancing food and nutritional security in response to the COVID-19 pandemic. Food security, 1–6 |
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
Li Q, Liu ZH, Xiao JS, Ieee. 2018. A Data Collection Collar for Vital Signs of Cows on the Grassland Based on LoRa |
| [67] |
|
| [68] |
Liu X, Guo Y, Wang QL, Zhang J, Shi Z (2013) Assessment and mapping of soil nitrogen using Visible-Near-Infrared (Vis-NIR) spectra. In: International Symposium on Photoelectronic Detection and Imaging 2013: Imaging Spectrometer Technologies and Applications, (Eds.) L. Zhang, J. Yang, Vol. 8910 |
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
Nelson DW, Sommers LE (1996). Total carbon, organic carbon, and organic matter. 2nd ed. in: Am. Soc. of Agron., (Eds.) Sparks DL, et al. Vol. 9, SSA. Madison, WI, p. 961–1010 |
| [81] |
|
| [82] |
NOAA. 2020. NOAA National Centers for Environmental Information (NCEI) U.S. Billion-Dollar Weather and Climate Disasters Vol. 2020. https://www.ncdc.noaa.gov/billions/ |
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
Tobler, W.R. 1970. A Computer Movie Simulating Urban Growth in the Detroit Region. Economic Geography, 46(ArticleType: research-article/Issue Title: Supplement: Proceedings. International Geographical Union. Commission on Quantitative Methods/Full publication date: Jun., 1970/Copyright © 1970 Clark University), 234–240 |
| [105] |
|
| [106] |
Topp GC, Ferre PA (2002) Water content. In: Methods of Soil Analysis: Part 4 Physical Methods, (Eds.) J.H. Dane, G.C. Topp, Vol. 5, SSSA, Agronomy Monograph. Madison, WI, pp. 417–422 |
| [107] |
|
| [108] |
U.N. 2019. Project Breakthrough: Digital Agriculture. in: Disruptive Technology Executive Briefs, United Nations Global Compact. breakthrough.unglobalcompact.org, pp. breakthrough.unglobalcompact.org |
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
/
| 〈 |
|
〉 |