Dioxin impacts on lipid metabolism of soil microbes: towards effective detection and bioassessment strategies

Sabrin Mahfouz , Ghaytha Mansour , Denis J. Murphy , Abdulsamie Hanano

Bioresources and Bioprocessing ›› 2020, Vol. 7 ›› Issue (1) : 59

PDF
Bioresources and Bioprocessing ›› 2020, Vol. 7 ›› Issue (1) : 59 DOI: 10.1186/s40643-020-00347-1
Review

Dioxin impacts on lipid metabolism of soil microbes: towards effective detection and bioassessment strategies

Author information +
History +
PDF

Abstract

Dioxins are the most toxic known environmental pollutants and are mainly formed by human activities. Due to their structural stability, dioxins persist for extended periods and can be transported over long distances from their emission sources. Thus, dioxins can be accumulated to considerable levels in both human and animal food chains. Along with sediments, soils are considered the most important reservoirs of dioxins. Soil microorganisms are therefore highly exposed to dioxins, leading to a range of biological responses that can impact the diversity, genetics and functional of such microbial communities. Dioxins are very hydrophobic with a high affinity to lipidic macromolecules in exposed organisms, including microbes. This review summarizes the genetic, molecular and biochemical impacts of dioxins on the lipid metabolism of soil microbial communities and especially examines modifications in the composition and architecture of cell membranes. This will provide a useful scientific benchmark for future attempts at soil ecological risk assessment, as well as in identifying potential dioxin-specific-responsive lipid biomarkers. Finally, potential uses of lipid-sequestering microorganisms as a part of biotechnological approaches to the bio-management of environmental contamination with dioxins are discussed.

Keywords

Dioxins / Soil microbes / Lipid metabolism / Biodetection / Bioremediation

Cite this article

Download citation ▾
Sabrin Mahfouz, Ghaytha Mansour, Denis J. Murphy, Abdulsamie Hanano. Dioxin impacts on lipid metabolism of soil microbes: towards effective detection and bioassessment strategies. Bioresources and Bioprocessing, 2020, 7(1): 59 DOI:10.1186/s40643-020-00347-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aguilar PS, Hernandez-Arriaga AM, Cybulski LE, Erazo AC, de Mendoza D. Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J, 2001, 20(7): 1681-1691.

[2]

Aguilar‐Uscanga B, François JM (2003) A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Lett Appl Microbiolo 37:268–274. https://doi.org/10.1046/j.1472-765X.2003.01394.x

[3]

Ahn YB, Liu F, Fennell DE, Haggblom MM. Biostimulation and bioaugmentation to enhance dechlorination of polychlorinated dibenzo-p-dioxins in contaminated sediments. FEMS Microbiol Ecol, 2008, 66(2): 271-281.

[4]

Al-Bayati ZA, Stohs SJ. The role of iron in 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced lipid peroxidation by rat liver microsomes. Toxicol Lett, 1987, 38(1–2): 115-121.

[5]

Al-Bayati ZA, Stohs SJ. The possible role of phospholipase A2 in hepatic microsomal lipid peroxidation induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in rats. Arch Environ Contam Toxicol, 1991, 20(3): 361-365.

[6]

Al-Bayati ZA, Wahba ZZ, Stohs SJ. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-induced alterations in lipid peroxidation, enzymes, and divalent cations in rat testis. Xenobiotica, 1988, 18(11): 1281-1289.

[7]

Albergamo A, Rigano F, Purcaro G, Mauceri A, Fasulo S, Mondello L. Free fatty acid profiling of marine sentinels by nanoLC-EI-MS for the assessment of environmental pollution effects. Sci Total Environ, 2016, 571: 955-962.

[8]

Anasonye F, Winquist E, Kluczek-Turpeinen B, Räsänen M, Salonen K, Steffen KT, Tuomela M. Fungal enzyme production and biodegradation of polychlorinated dibenzo-p-dioxins and dibenzofurans in contaminated sawmill soil. Chemosphere, 2014, 110: 85-90.

[9]

Angrish MM, Dominici CY, Zacharewski TR. TCDD-elicited effects on liver, serum, and adipose lipid composition in C57BL/6 mice. Toxicol Sci, 2013, 13: 108-115.

[10]

Armengaud J, Happe B, Timmis KN. Genetic analysis of dioxin dioxygenase of Sphingomonas sp. Strain RW1: catabolic genes dispersed on the genome. J Bacteriol., 1998, 180(15): 3954-3966.

[11]

Ayari S, Dussault D, Millette M, Hamdi M, Lacroix M. Changes in membrane fatty acids and murein composition of Bacillus cereus and Salmonella Typhi induced by gamma irradiation treatment. Int J Food Microbiol, 2009, 135(1): 1-6.

[12]

Bassompierre M, Tomasi G, Munck L, Bro R, Engelsen SB. Dioxin screening in fish product by pattern recognition of biomarkers. Chemosphere, 2007, 67(9): S28-35.

[13]

Bayer AS, Prasad R, Chandra J, Koul A, Smriti M, Varma A, Skurray RA, Firth N, Brown MH, Koo SP, Yeaman MR. In vitro resistance of Staphylococcus aureus to thrombin-induced platelet microbicidal protein is associated with alterations in cytoplasmic membrane fluidity. Infect Immun, 2000, 68(6): 3548-3553.

[14]

Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN, DeLong EF. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science, 2000, 289(5486): 1902-1906.

[15]

Beja O, Suzuki MT, Koonin EV, Aravind L, Hadd A, Nguyen LP, Villacorta R, Amjadi M, Garrigues C, Jovanovich SB, Feldman RA, DeLong EF. Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ Microbiol, 2000, 2(5): 516-529.

[16]

Beja O, Spudich EN, Spudich JL, Leclerc M, DeLong EF. Proteorhodopsin phototrophy in the ocean. Nature, 2001, 411(6839): 786-789.

[17]

Bestervelt LL, Piper DW, Pitt JA, Piper WN. Lipid peroxidation in the adrenal glands of male rats exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicol Lett, 1994, 70(2): 139-145.

[18]

Beurskens JEM, Mol GAJ, Barreveld HL, Vv M, Winkels HJ. Geochronology of priority pollutants in a sedimentation area of the Rhine River. Environ Toxicol Chem, 1993, 12: 9.

[19]

Bilal M, Adeel M, Rasheed T, Zhao Y, Iqbal HMN. Emerging contaminants of high concern and their enzyme-assisted biodegradation—a review. Environ Int, 2019, 124: 336-353.

[20]

Birgul A, Tasdemir Y. Seasonal atmospheric deposition variations of polychlorinated biphenyls (PCBs) and comparison of some deposition sampling techniques. Environ Sci Pollut Res Int, 2011, 18(3): 396-406.

[21]

Birla P, Kamens RM. Effect of combustion temperature on the atmospheric stability of polybrominated Dibenzo-p-dioxins and Dibenzofurans. Environ Sci Technol, 1994, 28(8): 1437-1443.

[22]

Blee E, Boachon B, Burcklen M, Le Guedard M, Hanano A, Heintz D, Ehlting J, Herrfurth C, Feussner I, Bessoule JJ. The reductase activity of the Arabidopsis caleosin RESPONSIVE TO DESSICATION20 mediates gibberellin-dependent flowering time, abscisic acid sensitivity, and tolerance to oxidative stress. Plant Physiol, 2014, 166(1): 109-124.

[23]

Bouassida M, Ghazala I, Ellouze-Chaabouni S, Ghribi D. Improved biosurfactant production by Bacillus subtilis SPB1 mutant obtained by random mutagenesis and its application in enhanced oil recovery in a sand system. J Microbiol Biotechnol, 2018, 28(1): 95-104.

[24]

Boyd EM, Killham K, Wright J, Rumford S, Hetheridge M, Cumming R, Meharg AA. Toxicity assessment of xenobiotic contaminated groundwater using lux modified Pseudomonas fluorescens. Chemosphere, 1997, 35(9): 1967-1985.

[25]

Braganza LF, Worcester DL. Hydrostatic pressure induces hydrocarbon chain interdigitation in single-component phospholipid bilayers. Biochemistry, 1986, 25(9): 2591-2596.

[26]

Brinke A, Buchinger S. Toxicogenomics in environmental science. Adv Biochem Eng Biotechnol, 2017, 157: 159-186.

[27]

Bumpus JA, Tien M, Wright D, Aust SD. Oxidation of persistent environmental pollutants by a white rot fungus. Science, 1985, 228(4706): 1434-1436.

[28]

Bunge M, Adrian L, Kraus A, Opel M, Lorenz WG, Andreesen JR, Gorisch H, Lechner U. Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium. Nature, 2003, 421: 357-360.

[29]

Burkhard LP, Sheedy BR, McCauley DJ. Prediction of chemical residues in aquatic organisms for a field discharge situation. Chemosphere, 1994, 29(1): 141-153.

[30]

Caruso JA, Klaue B, Michalke B, Rocke DM. Group assessment: elemental speciation. Ecotoxicol Environ Saf, 2003, 56(1): 32-44.

[31]

Cerniglia CE. Microbial metabolism of polycyclic aromatic hydrocarbons. Adv Appl Microbiol, 1984, 30: 31-71.

[32]

Charuchinda P, Waditee-Sirisattha R, Kageyama H, Yamada D, Sirisattha S, Tanaka Y, Mahakhant A, Takabe T. Caleosin from Chlorella vulgaris TISTR 8580 is salt-induced and heme-containing protein. Biosci Biotechnol Biochem, 2015, 79: 1119-1124.

[33]

Chen L, Ran Y, Xing B, Mai B, He J, Wei X, Fu J, Sheng G. Contents and sources of polycyclic aromatic hydrocarbons and organochlorine pesticides in vegetable soils of Guangzhou, China. Chemosphere, 2005, 60(7): 879-890.

[34]

Chen SJ, Tsai JH, Chang-Chien GP, Huang KL, Wang LC, Lin WY, Lin CC, Yeh CK. Emission factors and congener-specific characterization of PCDD/Fs, PCBs, PBDD/Fs and PBDEs from an off-road diesel engine using waste cooking oil-based biodiesel blends. J Hazard Mater, 2017, 339: 274-280.

[35]

Chen Y, Liu M, Chen S, Wei X. Decreased formation of branched-chain short fatty acids in Bacillus amyloliquefaciens by metabolic engineering. Biotechnol Lett, 2017, 39(4): 529-533.

[36]

Chiou RY, Phillips RD, Zhao P, Doyle MP, Beuchat LR. Ethanol-mediated variations in cellular fatty acid composition and protein profiles of two genotypically different strains of Escherichia coli O157:H7. Appl Environ Microbiol, 2004, 70(4): 2204-2210.

[37]

Choi KH, Heath RJ, Rock CO. beta-ketoacyl-acyl carrier protein synthase III (FabH) is a determining factor in branched-chain fatty acid biosynthesis. J Bacteriol, 2000, 182(2): 365-370.

[38]

Chrostowski CP, Foster AS. A methodology for assessing congener-specific partitioning and plant uptake of dioxins and dioxin-like compounds. Chemosphere, 1996, 32: 2285-2304.

[39]

Cindoruk SS, Tasdemir Y. Dynamics of atmospheric polychlorinated biphenyls (PCBs): concentrations, patterns, partitioning, and dry deposition level estimations in a residential site of Turkey. Environ Monit Assess, 2010, 162(1–4): 67-80.

[40]

Coutinho M, Conceicao M, Borrego C, Nunes M. Atmospheric impact assessment and monitoring of dioxin emissions of municipal solid waste incinerators in Portugal. Chemosphere, 1998, 37(9–12): 2119-2126.

[41]

Cranmer-Byng MM, Liddle DM, De Boer AA, Monk JM, Robinson LE. Proinflammatory effects of arachidonic acid in a lipopolysaccharide-induced inflammatory microenvironment in 3T3-L1 adipocytes in vitro. Appl Physiol Nat Metab, 2015, 40: 142-154.

[42]

Cronan JE Jr, Gelmann EP. Physical properties of membrane lipids: biological relevance and regulation. Bacteriol Rev, 1975, 39(3): 232-256.

[43]

de Mendoza D, Klages Ulrich A, Cronan JE Jr. Thermal regulation of membrane fluidity in Escherichiacoli. Effects of overproduction of beta-ketoacyl-acyl carrier protein synthase I. J Biol Chem, 1983, 258(4): 2098-2101.

[44]

Denich TJ, Beaudette LA, Lee H, Trevors JT. Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. J Microbiol Methods, 2003, 52(2): 149-182.

[45]

Depatie C, Houde M, Verreault J. Environmental exposure of northern pike to a primary wastewater effluent: impact on the lipidomic profile and lipid metabolism. Aquat Toxicol, 2020, 221: 105421.

[46]

Di Pasqua R, Hoskins N, Betts G, Mauriello G. Changes in membrane fatty acids composition of microbial cells induced by addiction of thymol, carvacrol, limonene, cinnamaldehyde, and eugenol in the growing media. J Agric Food Chem, 2006, 54(7): 2745-2749.

[47]

Diletti G, Ceci R, De Benedictis A, Migliorati G, Scortichini G. Determination of dioxin-like polychlorinated biphenyls in feed and foods of animal origin by gas chromatography and high resolution mass spectrometry. Veterinaria Italiana, 2007, 43(1): 129-140.

[48]

Diomande SE, Nguyen-The C, Guinebretiere MH, Broussolle V, Brillard J. Role of fatty acids in Bacillus environmental adaptation. Front Microbiol, 2015, 6: 813.

[49]

Dyke PH, Sutton M, Wood D, Marshall J. Investigations on the effect of chlorine in lubricating oil and the presence of a diesel oxidation catalyst on PCDD/F releases from an internal combustion engine. Chemosphere, 2007, 67(7): 1275-1286.

[50]

Engwall M, Hjelm K. Uptake of dioxin-like compounds from sewage sludge into various plant species—assessment of levels using a sensitive bioassay. Chemosphere, 2000, 40(9–11): 1189-1195.

[51]

Evans RI, McClure PJ, Gould GW, Russell NJ. The effect of growth temperature on the phospholipid and fatty acyl compositions of non-proteolytic Clostridium botulinum. Int J Food Microbiol, 1998, 40(3): 159-167.

[52]

Fan Y, Ortiz-Urquiza A, Garrett T, Pei Y, Keyhani NO. Involvement of a caleosin in lipid storage, spore dispersal, and virulence in the entomopathogenic filamentous fungus, Beauveria bassiana. Environ Microbiol, 2015, 17(11): 4600-4614.

[53]

Fang S, Cui Q, Matherne B, Hou A. Polychlorinated biphenyl concentrations, accumulation rates in soil from atmospheric deposition and analysis of their affecting landscape variables along an urban-rural gradient in Shanghai, China. Chemosphere, 2017, 186: 884-892.

[54]

Field JA, Sierra-Alvarez R. Microbial degradation of chlorinated dioxins. Chemosphere, 2008, 71: 1005-1018.

[55]

Fozo EM, Quivey RG Jr. The fabM gene product of Streptococcus mutans is responsible for the synthesis of monounsaturated fatty acids and is necessary for survival at low pH. J Bacteriol, 2004, 186(13): 4152-4158.

[56]

Fozo EM, Quivey RG Jr. Shifts in the membrane fatty acid profile of Streptococcus mutans enhance survival in acidic environments. Appl Environ Microbiol, 2004, 70(2): 929-936.

[57]

Froissard M, D'Andrea S, Boulard C, Chardot T. Heterologous expression of AtClo1, a plant oil body protein, induces lipid accumulation in yeast. FEMS Yeast Res, 2009, 9: 428-438.

[58]

Fujita Y, Matsuoka H, Hirooka K. Regulation of fatty acid metabolism in bacteria. Mol Microbiol, 2007, 66(4): 829-839.

[59]

Fukui S, Tanaka A (1981) Metabolism of alkanes by yeasts, vol 19. In: Advances in biochemical engineering

[60]

Fulco AJ. The biosynthesis of unsaturated fatty acids by bacilli. II. Temperature-dependent biosynthesis of polyunsaturated fatty acids. J Biol Chem, 1970, 245(11): 2985-2990.

[61]

Fulco AJ. Fatty acid metabolism in bacteria. Prog Lipid Res, 1983, 22(2): 133-160.

[62]

Fuster G, Schuhmacher M, Domingo JL. Flow analysis of PCDD/Fs for Tarragona Province, Spain. A preliminary inventory. Environ Sci Pollut Res Int, 2001, 8(2): 91-94.

[63]

Gavrilescu M, Chisti Y. Biotechnology—a sustainable alternative for chemical industry. Biotechnol Adv, 2005, 23(7–8): 471-499.

[64]

Geyer HJ, Scheunert I, Rapp K, Gebefugi I, Steinberg C, Kettrup A. The relevance of fat content in toxicity of lipophilic chemicals to terrestrial animals with special reference to dieldrin and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Ecotoxicol Environ Saf, 1993, 26(1): 45-60.

[65]

Guinebretiere MH, Auger S, Galleron N, Contzen M, De Sarrau B, De Buyser ML, Lamberet G, Fagerlund A, Granum PE, Lereclus D, De Vos P, Nguyen-The C, Sorokin A. Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus Group occasionally associated with food poisoning. Int J Syst Evol Microbiol, 2013, 63(Pt 1): 31-40.

[66]

Gurr MI, Harwood JL, Mitchell R, Frayn KN, Murphy DJ. Lipids: biochemistry, biotechnology and health, 2016, 6, Oxford: Wiley/Blackwell, 448.

[67]

Habe H, Chung JS, Lee JH, Kasuga K, Yoshida T, Nojiri H, Omori T. Degradation of chlorinated dibenzofurans and dibenzo-p-dioxins by two types of bacteria having angular dioxygenases with different features. Appl Environ Microbiol, 2001, 67(8): 3610-3617.

[68]

Hanano A, Burcklen M, Flenet M, Ivancich A, Louwagie M, Garin J, Blee E. Plant seed peroxygenase is an original heme-oxygenase with an EF-hand calcium binding motif. J Biol Chem, 2006, 281(44): 33140-33151.

[69]

Hanano A, Al-Arfi M, Shaban M, Daher A, Shamma M. Removal of petroleum-crude oil from aqueous solution by Saccharomyces cerevisiae SHSY strain necessitates at least an inducible CYP450ALK homolog gene. J Basic Microbiol, 2014, 54(5): 358-368.

[70]

Hanano A, Almousally I, Shaban M. Phytotoxicity effects and biological responses of Arabidopsisthaliana to 2,3,7,8-tetrachlorinated dibenzo-p-dioxin exposure. Chemosphere, 2014, 104: 76-84.

[71]

Hanano A, Ammouneh H, Almousally I, Alorr A, Shaban M, Alnaser AA, Ghanem I. Traceability of polychlorinated dibenzo-dioxins/furans pollutants in soil and their ecotoxicological effects on genetics, functions and composition of bacterial community. Chemosphere, 2014, 108: 326-333.

[72]

Hanano A, Almousally I, Shaban M, Blee E. A caleosin-like protein with peroxygenase activity mediates Aspergillus flavus development, aflatoxin accumulation, and seed infection. Appl Environ Microbiol, 2015, 81(18): 6129-6144.

[73]

Hanano A, Almousally I, Shaban M, Moursel N, Shahadeh A, Alhajji E. Differential tissue accumulation of 2,3,7,8-tetrachlorinated dibenzo-p-dioxin in Arabidopsis thaliana affects plant chronology, lipid metabolism and seed yield. BMC Plant Biol, 2015, 15: 193.

[74]

Hanano A, Shaban M, Almousally I, Al-Ktaifani M. Saccharomyces cerevisiae SHSY detoxifies petroleum n-alkanes by an induced CYP52A58 and an enhanced order in cell surface hydrophobicity. Chemosphere, 2015, 135: 418-426.

[75]

Hanano A, Almousally I, Shaban M, Rahman F, Blee E, Murphy DJ. Biochemical, transcriptional, and bioinformatic analysis of lipid droplets from seeds of date palm (Phoenix dactylifera L.) and their use as potent sequestration agents against the toxic pollutant, 2,3,7,8-tetrachlorinated dibenzo-p-dioxin. Front Plant Sci, 2016, 7: 836.

[76]

Hanano A, Almousally I, Shaban M, Rahman F, Hassan M, Murphy DJ. Specific caleosin/peroxygenase and lipoxygenase activities are tissue-differentially expressed in date palm (Phoenix dactylifera L.) seedlings and are further induced following exposure to the toxin 2,3,7,8-tetrachlorodibenzo-p-dioxin. Front Plant Sci, 2016, 7: 2025.

[77]

Hanano A, Shaban M, Almousally I. Biochemical, molecular, and transcriptional highlights of the biosynthesis of an effective biosurfactant produced by Bacillussafensis PHA3, a petroleum-dwelling bacteria. Front Microbiol, 2017, 8: 77.

[78]

Hanano A, Alkara M, Almousally I, Shaban M, Rahman F, Hassan M, Murphy DJ. The peroxygenase activity of the Aspergillus flavus caleosin, AfPXG, modulates the biosynthesis of aflatoxins and their trafficking and extracellular secretion via lipid droplets. Front Microbiol, 2018, 9: 158.

[79]

Hanano A, Almousally I, Shaban M, Murphy DJ. Arabidopsis plants exposed to dioxin result in a WRINKLED seed phenotype due to 20S proteasomal degradation of WRI1. J Exp Bot, 2018, 69(7): 1781-1794.

[80]

Hanano A, Almousally I, Shaban M, Murphy DJ. Exposure of arabidopsis plants to dioxin results in a wrinkled seed phenotype that is likely due to 20S proteasomal degradation of WRI1. J Exp Bot, 2018

[81]

Hanano A, Shaban M, Almousally I, Murphy DJ. Identification of a dioxin-responsive oxylipin signature in roots of date palm: involvement of a 9-hydroperoxide fatty acid reductase, caleosin/peroxygenase PdPXG2. Sci Rep, 2018, 8(1): 13181.

[82]

Hanano A, Almousally I, Shaban M. Exposure of Aspergillus flavus NRRL 3357 to the environmental toxin, 2,3,7,8-tetrachlorinated dibenzo-p-dioxin, results in a hyper aflatoxicogenic phenotype: a possible role for caleosin/peroxygenase (AfPXG). Front Microbiol, 2019, 10: 2338.

[83]

Hanano A, Shaban M, Almutlk D, Almousally I. The cytochrome P450BM-1 of Bacillusmegaterium A14K is induced by 2,3,7,8-tetrachlorinated dibenzo-p-dioxin: biophysical, molecular and biochemical determinants. Chemosphere, 2019, 216: 258-270.

[84]

Hanson KB, Hoff DJ, Lahren TJ, Mount DR, Squillace AJ, Burkhard LP. Estimating n-octanol-water partition coefficients for neutral highly hydrophobic chemicals using measured n-butanol-water partition coefficients. Chemosphere, 2019, 218: 616-623.

[85]

Haq I, Raj A. Bharagava R, Saxena G. Pulp and paper mill wastewater: ecotoxicological effects and bioremediation approaches for environmental safety. Bioremediation of industrial waste for environmental safety, 2020, Singapore: Springer.

[86]

Harmsen J, Rulkens WH, Eijsackers HJP. Bioavailability: concept for understanding or tool for predicting?. Land Contam Reclam, 2005, 13: 161-171.

[87]

Hatzinger PB, Alexander M. Effect of aging of chemicals in soil on their biodegradability and extractability. Environ Sci Technol, 1995, 29: 537-545.

[88]

Hay A. Chlorinated dioxins and the environment. Nature, 1981, 289(5796): 351-352.

[89]

Heipieper HJ, Meinhardt F, Segura A. The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol Lett, 2003, 229(1): 1-7.

[90]

Hermanson MH, Isaksson E, Divine D, Teixeira C, Muir DCG. Atmospheric deposition of polychlorinated biphenyls to seasonal surface snow at four glacier sites on Svalbard, 2013–2014. Chemosphere, 2020, 243: 125324.

[91]

Hippelein M, Kaupp H, Dörr G, McLachlan M, Hutzinger O. Baseline contamination assessment for a new resource recovery facility in Germany part II: atmospheric concentrations of PCDD/F. Chemosphere, 1996, 32: 1605-1616.

[92]

Hiraishi A, Miyakoda H, Lim BR, Hu HY, Fujie K, Suzuki J. Toward the bioremediation of dioxin-polluted soil: structural and functional analyses of in situ microbial populations by quinone profiling and culture-dependent methods. Appl Microbiol Biotechnol, 2001, 57(1–2): 248-256.

[93]

Hiraishi A, Iwasaki M, Kawagishi T, Yoshida N, Narihiro T, Kenji Kato K. Significance of lipoquinones as quantitative biomarkers of bacterial populations in the environment. Microbes Environ, 2003, 18: 89-93.

[94]

Hiraishi A, Narihiro T, Yamanaka Y. Microbial community dynamics during start-up operation of flowerpot-using fed-batch reactors for composting of household biowaste. Environ Microbiol, 2003, 5(9): 765-776.

[95]

Holtwick R, Keweloh H, Meinhardt F. cis/trans isomerase of unsaturated fatty acids of Pseudomonasputida P8: evidence for a heme protein of the cytochrome c type. Appl Environ Microbiol, 1999, 65(6): 2644-2649.

[96]

Hong C, Chen Y, Li L, Chen S, Wei X. Identification of a key gene involved in branched-chain short fatty acids formation in natto by transcriptional analysis and enzymatic characterization in Bacillus subtilis. J Agric Food Chem, 2017, 65(8): 1592-1597.

[97]

Hutin D, Tamblyn L, Gomez A, Grimaldi G, Soedling H, Cho T, Ahmed S, Lucas C, Kanduri C, Grant DM, Matthews J. Hepatocyte-specific deletion of TIPARP, a negative regulator of the aryl hydrocarbon receptor, is sufficient to increase sensitivity to dioxin-induced wasting syndrome. Toxicol Sci, 2018

[98]

Inouye K, Shinkyo R, Takita T, Ohta M, Sakaki T. Metabolism of polychlorinated dibenzo-p-dioxins (PCDDs) by human cytochrome P450-dependent monooxygenase systems. J Agric Food Chem, 2002, 50(19): 5496-5502.

[99]

IPCS (2003) Polychlorinated biphenyls: human health aspects. Geneva: World Health Organization, International Programme on Chemical Safety (Concise International Chemical Assessment Document 55. https://www.inchem.org/documents/cicads/cicads/cicad55.htm)

[100]

ISO/FDIS (2008) Soil quality—requirements and guidance for the selection and application of methods for the assessment of bioavailability of contaminants in soil and soil materials. https://www.isoorg/committee/54408.html

[101]

Jacobs MW, Coates JA, Delfino JJ, Bitton G, Davis WM, Garcia KL. Comparison of sediment extract microtox® toxicity with semi-volatile organic priority pollutant concentrations. Arch Environ Contam Toxicol, 1993, 24: 461-468.

[102]

Jamme F, Vindigni JD, Mechin V, Cherifi T, Chardot T, Froissard M. Single cell synchrotron FT-IR microspectroscopy reveals a link between neutral lipid and storage carbohydrate fluxes in S. cerevisiae. PLoS ONE, 2013, 8: e74421.

[103]

Jin R, Bu D, Liu G, Zheng M, Lammel G, Fu J, Yang L, Li C, Habib A, Yang Y, Liu X. New classes of organic pollutants in the remote continental environment—chlorinated and brominated polycyclic aromatic hydrocarbons on the Tibetan Plateau. Environ Int, 2020, 137: 105574.

[104]

Kainou K, Kamisaka Y, Kimura K, Uemura H. Isolation of Delta12 and omega3-fatty acid desaturase genes from the yeast Kluyveromyces lactis and their heterologous expression to produce linoleic and alpha-linolenic acids in Saccharomyces cerevisiae. Yeast, 2006, 23(8): 605-612.

[105]

Kakirde KS, Parsley LC, Liles MR. Size does matter: application-driven approaches for soil metagenomics. Soil Biol Biochem, 2010, 42(11): 1911-1923.

[106]

Kalivas A, Ganopoulos I, Psomopoulos F, Grigoriadis I, Xanthopoulou A, Hatzigiannakis E, Osathanunkul M, Tsaftaris A, Madesis P. Comparative metagenomics reveals alterations in the soil bacterial community driven by N-fertilizer and Amino 16(R) application in lettuce. Genomics data, 2017, 14: 14-17.

[107]

Kaneda T. Biosynthesis of branched-chain fatty acids. IV. Factors affecting relative abundance of fatty acids produced by Bacillussubtilis. Can J Microbiol, 1966, 12(3): 501-514.

[108]

Kaneda T. Fatty acids of the genus Bacillus: an example of branched-chain preference. Bacteriol Rev, 1977, 41(2): 391-418.

[109]

Keweloh H, Heipieper HJ. Trans unsaturated fatty acids in bacteria. Lipids, 1996, 31(2): 129-137.

[110]

Kiddee P, Naidu R, Wong MH. Electronic waste management approaches: an overview. Waste Manag, 2013, 33(5): 1237-1250.

[111]

Kim BH, Fulco AJ. Induction by barbiturates of a cytochrome P-450-dependent fatty acid monooxygenase in Bacillus megaterium: relationship between barbiturate structure and inducer activity. Biochem Biophys Res Commun, 1983, 116(3): 843-850.

[112]

Kim KS, Hong KH, Ko YH, Yoon KD, Kim MG. Emission characteristics of PCDD/Fs in diesel engine with variable load rate. Chemosphere, 2003, 53(6): 601-607.

[113]

Kim HS, Kim NR, Choi W. Total fatty acid content of the plasma membrane of Saccharomyces cerevisiae is more responsible for ethanol tolerance than the degree of unsaturation. Biotechnol Lett, 2011, 33(3): 509-515.

[114]

Kimura N, Kamagata Y. Impact of dibenzofuran/dibenzo-p-dioxin amendment on bacterial community from forest soil and ring-hydroxylating dioxygenase gene populations. Appl Microbiol Biotechnol, 2009, 84(2): 365-373.

[115]

Kjeller LO, Rappe C. Time trends in levels, patterns, and profiles for polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in a sediment core from the baltic proper. Environ Sci Technol, 1995, 29(2): 346-355.

[116]

Koelmel JP, Napolitano MP, Ulmer CZ, Vasiliou V, Garrett TJ, Yost RA, Prasad MNV, Godri Pollitt KJ, Bowden JA. Environmental lipidomics: understanding the response of organisms and ecosystems to a changing world. Metabolomics, 2020, 16(5): 56.

[117]

Konings WN, Albers SV, Koning S, Driessen AJ. The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments. Antonie Van Leeuwenhoek, 2002, 81(1–4): 61-72.

[118]

Krauss M, Wilcke W. Polychlorinated naphthalenes in urban soils: analysis, concentrations, and relation to other persistent organic pollutants. Environ Pollut, 2003, 122(1): 75-89.

[119]

Lakshman MR, Campbell BS, Chirtel SJ, Ekarohita N. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on de novo fatty acid and cholesterol synthesis in the rat. Lipids, 1988, 904–6: 904-906.

[120]

Lakshman MR, Chirtel SJ, Chambers LL, Coutlakis PJ. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on lipid synthesis and lipogenic enzymes in the rat. J Pharmacol Exp Ther, 1989, 248(1): 62-66.

[121]

Laroo CA, Schenk CR, Sanchez LJ, McDonald J. Emissions of PCDD/Fs, PCBs, and PAHs from a modern diesel engine equipped with catalyzed emission control systems. Environ Sci Technol, 2011, 45(15): 6420-6428.

[122]

Latchoumycandane C, Chitra KC, Mathur PP. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces oxidative stress in the epididymis and epididymal sperm of adult rats. Arch Toxicol, 2003, 77: 280-284.

[123]

Lawrence BP, Kerkvliet NI. Role of altered arachidonic acid metabolism in 2,3,7, 8-tetrachlorodibenzo-p-dioxin-induced immune suppression in C57Bl/6 mice. Toxicol Sci, 1998, 42(1): 13-22.

[124]

Le TT, Son MH, Nam IH, Yoon H, Kang YG, Chang YS. Transformation of hexabromocyclododecane in contaminated soil in association with microbial diversity. J Hazard Mater, 2017, 325: 82-89.

[125]

Lee HB, Weng LD, Chau AS. Chemical derivatization analysis of pesticide residues. IX. Analysis of phenol and 21 chlorinated phenols in natural waters by formation of pentafluorobenzyl ether derivatives. J Assoc Off Anal Chem, 1984, 67(6): 1086-1091.

[126]

Loffeld B, Keweloh H. cis/trans isomerization of unsaturated fatty acids as possible control mechanism of membrane fluidity in Pseudomonas putida P8. Lipids, 1996, 31(8): 811-815.

[127]

Ma J, Horii Y, Cheng J, Wang W, Wu Q, Ohura T, Kannan K. Chlorinated and parent polycyclic aromatic hydrocarbons in environmental samples from an electronic waste recycling facility and a chemical industrial complex in China. Environ Sci Technol, 2009, 43(3): 643-649.

[128]

Mackay D, Bobra A, Chan DW, Shiu WY. Vapor-pressure correlations for low-volatility environmental chemicals. Environ Sci Technol, 1982, 16: 645-649.

[129]

Magan N, Fragoeiro S, Bastos C. Environmental factors and bioremediation of xenobiotics using white rot fungi. Mycobiology, 2010, 38(4): 238-248.

[130]

Marple L, Berridge B, Throop L. Measurement of the water-octanol partition coefficient of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Environ Sci Technol, 1986, 20(4): 397-399.

[131]

Matson RS, Hare RS, Fulco AJ. Characteristics of a cytochrome P-450-dependent fatty acid omega-2 hydroxylase from bacillus megaterium. Biochim Biophys Acta, 1977, 487(3): 487-494.

[132]

Meijer SN, Harner T, Helm PA, Halsall CJ, Johnston AE, Jones KC. Polychlorinated naphthalenes in U.K. soils: time trends, markers of source, and equilibrium status. Environ Sci Technol, 2001, 35(21): 4205-4213.

[133]

Meric D, Alshawabkeh AN, Shine JP, Sheahan TC. Bioavailability of hydrophobic organic compounds in thin-layered capped sediments. Chemosphere, 2014, 103: 281-289.

[134]

Mertes F, Mumbo J, Pandelova M, Bernhoft S, Corsten C, Henkelmann B, Bussian BM, Schramm KW. Comparative study of dioxin contamination from forest soil samples (BZE II) by mass spectrometry and EROD bioassay. Environ Sci Pollut Res Int, 2018, 25(5): 3977-3984.

[135]

Miao Y, Johnson NW, Phan T, Heck K, Gedalanga PB, Zheng X, Adamson D, Newell C, Wong MS, Mahendra S. Monitoring, assessment, and prediction of microbial shifts in coupled catalysis and biodegradation of 1,4-dioxane and co-contaminants. Water Res, 2020, 173: 115540.

[136]

Mohammadpour H, Murray WJ, Stohs SJ. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-induced lipid peroxidation in genetically responsive and non-responsive mice. Arch Environ Contam Toxicol, 1988, 17(5): 645-650.

[137]

Mrozik A, Piotrowska-Seget Z, Labuzek S. Changes in whole cell-derived fatty acids induced by naphthalene in bacteria from genus Pseudomonas. Microbiol Res, 2004, 159(1): 87-95.

[138]

Murphy DJ. The dynamic roles of intracellular lipid droplets: from archaea to mammals. Protoplasma, 2012, 249: 541-585.

[139]

Narhi LO, Fulco AJ. Identification and characterization of two functional domains in cytochrome P-450BM-3, a catalytically self-sufficient monooxygenase induced by barbiturates in Bacillus megaterium. J Biol Chem, 1987, 262(14): 6683-6690.

[140]

Narhi LO, Kim BH, Stevenson PM, Fulco AJ. Partial characterization of a barbiturate-induced cytochrome P-450-dependent fatty acid monooxygenase from Bacillusmegaterium. Biochem Biophys Res Commun, 1983, 116(3): 851-858.

[141]

Nichols DS, Nichols PD, Russell NJ, Davies NW, McMeekin TA. Polyunsaturated fatty acids in the psychrophilic bacterium Shewanella gelidimarina ACAM 456T: molecular species analysis of major phospholipids and biosynthesis of eicosapentaenoic acid. Biochim Biophys Acta, 1997, 1347(2–3): 164-176.

[142]

Nickels JD, Chatterjee S, Mostofian B, Stanley CB, Ohl M, Zolnierczuk P, Schulz R, Myles DAA, Standaert RF, Elkins JG, Cheng X, Katsaras J. Bacillus subtilis lipid extract, a branched-chain fatty acid model membrane. J Phys Chem Lett, 2017, 8(17): 4214-4217.

[143]

Nickels JD, Chatterjee S, Stanley CB, Qian S, Cheng X, Myles DAA, Standaert RF, Elkins JG, Katsaras J. The in vivo structure of biological membranes and evidence for lipid domains. PLoS Biol, 2017, 15(5): e2002214.

[144]

NIEHS U (2017) Dioxins. National Institute of Environmental Health Sciences. https://www.niehs.nih.gov/health/topics/agents/dioxins/index.cfm

[145]

Nishimura C, Horii Y, Tanaka S, Asante KA, Ballesteros F Jr, Viet PH, Itai T, Takigami H, Tanabe S, Fujimori T. Occurrence, profiles, and toxic equivalents of chlorinated and brominated polycyclic aromatic hydrocarbons in E-waste open burning soils. Environ Pollut, 2017, 225: 252-260.

[146]

Nzihou A, Themelis NJ, Kemiha M, Benhamou Y. Dioxin emissions from municipal solid waste incinerators (MSWIs) in France. Waste Manag, 2012, 32(12): 2273-2277.

[147]

Oliveira M, Costa S, Vaz J, Fernandes A, Slezakova K, Delerue-Matos C, Teixeira JP, Carmo Pereira M, Morais S. Firefighters exposure to fire emissions: Impact on levels of biomarkers of exposure to polycyclic aromatic hydrocarbons and genotoxic/oxidative-effects. J Hazard Mater, 2020, 383: 121179.

[148]

Ortiz-Urquiza A, Fan Y, Garrett T, Keyhani NO. Growth substrates and caleosin-mediated functions affect conidial virulence in the insect pathogenic fungus Beauveria bassiana. Microbiology, 2016, 162(11): 1913-1921.

[149]

Pakiet A, Kobiela J, Stepnowski P, Sledzinski T, Mika A. Changes in lipids composition and metabolism in colorectal cancer: a review. Lipids Health Dis, 2019, 18(1): 29.

[150]

Palmer G, McFadzean R, Killham K, Sinclair A, Paton GI. Use of lux-based biosensors for rapid diagnosis of pollutants in arable soils. Chemosphere, 1998, 36: 2683-2697.

[151]

Paraszkiewicz K, Bernat P, Kusmierska A, Chojniak J, Plaza G. Structural identification of lipopeptide biosurfactants produced by Bacillus subtilis strains grown on the media obtained from renewable natural resources. J Environ Manage, 2018, 209: 65-70.

[152]

Pedrotta V, Witholt B. Isolation and characterization of the cis-trans-unsaturated fatty acid isomerase of Pseudomonas oleovorans GPo12. J Bacteriol, 1999, 181(10): 3256-3261.

[153]

Plaza GA, Chojniak J, Mendrek B, Trzebicka B, Kvitek L, Panacek A, Prucek R, Zboril R, Paraszkiewicz K, Bernat P. Synthesis of silver nanoparticles by Bacillus subtilis T-1 growing on agro-industrial wastes and producing biosurfactant. IET Nanobiotechnol, 2016, 10(2): 62-68.

[154]

Pollitt F. Polychlorinated dibenzodioxins and polychlorinated dibenzofurans. Regul Toxicol Pharmacol, 1999, 30: 63-68.

[155]

Prokopec SD, Viluksela M, Miettinen HM, Boutros PC, Pohjanvirta R. Transgenerational epigenetic and transcriptomic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure in rat. Arch Toxicol, 2020

[156]

Quaiser A, Ochsenreiter T, Klenk HP, Kletzin A, Treusch AH, Meurer G, Eck J, Sensen CW, Schleper C. First insight into the genome of an uncultivated crenarchaeote from soil. Environ Microbiol, 2002, 4(10): 603-611.

[157]

Rahman F, Hassan M, Rosli R, Almousally I, Hanano A, Murphy DJ. Evolutionary and genomic analysis of the caleosin/peroxygenase (CLO/PXG) gene/protein families in the Viridiplantae. PLoS ONE, 2018, 13(5): e0196669.

[158]

Ratledge C, Wynn JP. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol, 2002, 51: 1-51.

[159]

Reischl A, Thoma H, Reissinger M, Hutzinger O. Accumulation of organic air constituents by plant surfaces. Spruce needles for monitoring airborne chlorinated hydrocarbons. Biomed Environ Sci, 1988, 1(3): 304-307.

[160]

Richterich K, Berger H, Steber J. The 'two-phase closed bottle test'—a suitable method for the determination of 'ready biodegradability' of poorly soluble compounds. Chemosphere, 1998, 37(2): 319-326.

[161]

Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, Loiacono KA, Lynch BA, MacNeil IA, Minor C, Tiong CL, Gilman M, Osburne MS, Clardy J, Handelsman J, Goodman RM. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol, 2000, 66(6): 2541-2547.

[162]

Rubilar O, Tortella G, Cea M, Acevedo F, Bustamante M, Gianfreda L, Diez MC. Bioremediation of a Chilean Andisol contaminated with pentachlorophenol (PCP) by solid substrate cultures of white-rot fungi. Biodegradation, 2011, 22(1): 31-41.

[163]

Ruettinger RT, Fulco AJ. Epoxidation of unsaturated fatty acids by a soluble cytochrome P-450-dependent system from Bacillus megaterium. J Biol Chem, 1981, 256(11): 5728-5734.

[164]

Russell NJ. Mechanism of thermal adaptation in bacteria: blueprints for survival. Trends Biochem Sci, 1984, 9: 108-112.

[165]

Russell NJ. Psychrophilic bacteria—molecular adaptations of membrane lipids. Comp Biochem Physiol A Physiol, 1997, 118(3): 489-493.

[166]

Russell NJ, Fukanaga M. A comparison of thermal adaptation of membrane lipids in psychrophilic and thermophilic bacteria. FEMS Microbiol Rev, 1990, 75: 171-182.

[167]

Russo E, d'Ippolito G, Fontana A, Sarno D, D'Alelio D, Busseni G, Ianora A, von Elert E, Carotenuto Y. Density-dependent oxylipin production in natural diatom communities: possible implications for plankton dynamics. ISME J, 2020, 14(1): 164-177.

[168]

Safe S. Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and related compounds: environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs). Crit Rev Toxicol, 1990, 21(1): 51-88.

[169]

Sakaki T, Munetsuna E. Enzyme systems for biodegradation of polychlorinated dibenzo-p-dioxins. Appl Microbiol Biotechnol, 2010, 88(1): 23-30.

[170]

Sakaki T, Shinkyo R, Takita T, Ohta M, Inouye K. Biodegradation of polychlorinated dibenzo-p-dioxins by recombinant yeast expressing rat CYP1A subfamily. Arch Biochem Biophys, 2002, 401(1): 91-98.

[171]

Salamanca M, Chandia C, Hernandez A. Impact of forest fires on the concentrations of polychlorinated dibenzo-p-dioxin and dibenzofurans in coastal waters of central Chile. Sci Total Environ, 2016, 573: 1397-1405.

[172]

Sarna LP, Hodge PE, Webster GRB. Octanol-water partition coefficients of chlorinated dioxins and dibenzofurans by reversed-phase HPLC using several C18 columns. Chemosphere, 1984, 13: 975-983.

[173]

Sato SI, Nam JW, Kasuga K, Nojiri H, Yamane H, Omori T. Identification and characterization of genes encoding carbazole 1,9a-dioxygenase in Pseudomonas sp. strain CA10. J Bacteriol, 1997, 179(15): 4850-4858.

[174]

Schleper C, DeLong EF, Preston CM, Feldman RA, Wu KY, Swanson RV. Genomic analysis reveals chromosomal variation in natural populations of the uncultured psychrophilic archaeon Cenarchaeum symbiosum. J Bacteriol, 1998, 180(19): 5003-5009.

[175]

Schloss PD, Handelsman J. Biotechnological prospects from metagenomics. Curr Opin Biotechnol, 2003, 14(3): 303-310.

[176]

Schwalb H, Narhi LO, Fulco AJ. Purification and characterization of pentobarbital-induced cytochrome P-450BM-1 from Bacillus megaterium ATCC 14581. Biochim Biophys Acta, 1985, 838(3): 302-311.

[177]

Semple KT, Morriss AWJ, Paton GI. Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. Eur J Soil Sci, 2003, 54: 809-818.

[178]

Shen JP, Zhang LM, Zheng YM, Zhu YG, He JZ. Methodology and application of soil metagenomics. Ying Yong Sheng Tai Xue Bao, 2007, 18(1): 212-218.

[179]

Shih M, Lee WS, Chang-Chien GP, Wang LC, Hung CY, Lin KC. Dry deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in ambient air. Chemosphere, 2006, 62(3): 411-416.

[180]

Shinkyo R, Sakaki T, Ohta M, Inouye K. Metabolic pathways of dioxin by CYP1A1: species difference between rat and human CYP1A subfamily in the metabolism of dioxins. Arch Biochem Biophys, 2003, 409(1): 180-187.

[181]

Shinkyo R, Sakaki T, Takita T, Ohta M, Inouye K. Generation of 2,3,7,8-TCDD-metabolizing enzyme by modifying rat CYP1A1 through site-directed mutagenesis. Biochem Biophys Res Commun, 2003, 308(3): 511-517.

[182]

Shlu WY, Doucette W, Gobas FAPC, Andren A, Mackay D. Physical–chemical properties of chlorinated dibenzo-p-dioxins. Environ Sci Technol, 1988, 22: 651-658.

[183]

Sikkema J, de Bont JA, Poolman B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev, 1995, 59(2): 201-222.

[184]

Silbert DF, Ladenson RC, Honegger JL. The unsaturated fatty acid requirement in Escherichia coli. Temperature dependence and total replacement by branched-chain fatty acids. Biochim Biophys Acta, 1973, 311(3): 349-361.

[185]

Smidova K, Kim S, Hofman J. Bioavailability of five hydrophobic organic compounds to earthworms from sterile and non-sterile artificial soils. Chemosphere, 2017, 179: 222-231.

[186]

Sollai M, Villanueva L, Hopmans EC, Reichart GJ, Sinninghe Damste JS. A combined lipidomic and 16S rRNA gene amplicon sequencing approach reveals archaeal sources of intact polar lipids in the stratified Black Sea water column. Geobiology, 2019, 17(1): 91-109.

[187]

Sousa S, Duffy C, Weitz LH, Glover A, Bär E, Henkler R, Killham K. Use of a lux-modified bacterial biosensor to identify constraints to bioremediation of btex-contaminated sites. Environ Toxicol Chem, 2009, 17: 1039-1045.

[188]

Ssebugere P, Sillanpaa M, Matovu H, Mubiru E. Human and environmental exposure to PCDD/Fs and dioxin-like PCBs in Africa: a review. Chemosphere, 2019, 223: 483-493.

[189]

Steinberg SM, Poziomek EJ, Engelmann WH, Rogers KR. A review of environmental applications of bioluminescence measurements. Chemosphere, 1995, 30: 2155-2197.

[190]

Stella T, Covino S, Cvancarova M, Filipova A, Petruccioli M, D'Annibale A, Cajthaml T. Bioremediation of long-term PCB-contaminated soil by white-rot fungi. J Hazard Mater, 2017, 324(Pt B): 701-710.

[191]

Stockholm C (2001) Stockholm convention on persistent organic pollutants (POPs). Geneva, Secretariat of the Stockholm Convention. https://chm.pops.int

[192]

Stukey JE, McDonough VM, Martin CE. Isolation and characterization of OLE1, a gene affecting fatty acid desaturation from Saccharomycescerevisiae. J Biol Chem, 1989, 264(28): 16537-16544.

[193]

Sulistyaningdyah WT, Ogawa J, Li QS, Shinkyo R, Sakaki T, Inouye K, Schmid RD, Shimizu S. Metabolism of polychlorinated dibenzo-p-dioxins by cytochrome P450 BM-3 and its mutant. Biotechnol Lett, 2004, 26(24): 1857-1860.

[194]

Suutari M, Laakso S. Microbial fatty acids and thermal adaptation. Crit Rev Microbiol, 1994, 20(4): 285-328.

[195]

Suutari M, Liukkonen K, Laakso S. Temperature adaptation in yeasts: the role of fatty acids. J Gen Microbiol, 1990, 136(8): 1469-1474.

[196]

Suzuki MT, Beja O, Taylor LT, Delong EF. Phylogenetic analysis of ribosomal RNA operons from uncultivated coastal marine bacterioplankton. Environ Microbiol, 2001, 3(5): 323-331.

[197]

Tang CH, Lin CY, Sun PP, Lee SH, Wang WH. Modeling the effects of Irgarol 1051 on coral using lipidomic methodology for environmental monitoring and assessment. Sci Total Environ, 2018, 627: 571-578.

[198]

Tartu S, Lille-Langoy R, Storseth TR, Bourgeon S, Brunsvik A, Aars J, Goksoyr A, Jenssen BM, Polder A, Thiemann GW, Torget V, Routti H. Multiple-stressor effects in an apex predator: combined influence of pollutants and sea ice decline on lipid metabolism in polar bears. Sci Rep, 2017, 7(1): 16487.

[199]

Thavasi R, Jayalakshmi S, Balasubramanian T, Banat IM. Production and characterization of a glycolipid biosurfactant from Bacillus megaterium. World J Microbiol Biotechnol, 2008, 24: 917-925.

[200]

Thavasi R, Jayalakshmi S, Banat IM. Effect of biosurfactant and fertilizer on biodegradation of crude oil by marine isolates of Bacillus megaterium, Corynebacteriumkutscheri and Pseudomonas aeruginosa. Bioresour Technol, 2011, 102(2): 772-778.

[201]

Torres JP, Leite C, Krauss T, Weber R. Landfill mining from a deposit of the chlorine/organochlorine industry as source of dioxin contamination of animal feed and assessment of the responsible processes. Environ Sci Pollut Res Int, 2013, 20(4): 1958-1965.

[202]

Tratnyek PG, Edwards E, Carpenter L, Blossom S. Environmental occurrence, fate, effects, and remediation of halogenated (semi)volatile organic compounds. Environ Sci Process Impacts, 2020, 22(3): 465-471.

[203]

Travis CC, Hattemer-Frey HA. A perspective on dioxin emissions from municipal solid waste incinerators. Risk Anal, 1989, 9(1): 91-97.

[204]

Tsujimoto S, Ishida T, Takeda T, Ishii Y, Onomura Y, Tsukimori K, Takechi S, Yamaguchi T, Uchi H, Suzuki SO, Yamamoto M, Himeno M, Furue M, Yamada H. Selenium-binding protein 1: its physiological function, dependence on aryl hydrocarbon receptors, and role in wasting syndrome by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biochim Biophys Acta, 2013, 1830(6): 3616-3624.

[205]

Tsydenova O, Bengtsson M. Chemical hazards associated with treatment of waste electrical and electronic equipment. Waste Manag, 2011, 31(1): 45-58.

[206]

Tue NM, Goto A, Takahashi S, Itai T, Asante KA, Kunisue T, Tanabe S. Release of chlorinated, brominated and mixed halogenated dioxin-related compounds to soils from open burning of e-waste in Agbogbloshie (Accra, Ghana). J Hazard Mater, 2016, 302: 151-157.

[207]

Tuomisto JT, Pohjanvirta R, Unkila M, Tuomisto J. 2,3,7,8-Tetrachlorodibenzo-p-dioxin-induced anorexia and wasting syndrome in rats: aggravation after ventromedial hypothalamic lesion. Eur J Pharmacol, 1995, 293(4): 309-317.

[208]

Tuppurainen K, Asikainen A, Ruokojarvi P, Ruuskanen J. Perspectives on the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans during municipal solid waste (MSW) incineration and other combustion processes. Acc Chem Res, 2003, 36(9): 652-658.

[209]

Van den Berg M, Birnbaum LS, Denison M, De Vito M, Farland W, Feeley M, Fiedler H, Hakansson H, Hanberg A, Haws L, Rose M, Safe S, Schrenk D, Tohyama C, Tritscher A, Tuomisto J, Tysklind M, Walker N, Peterson RE. The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci, 2006, 93(2): 223-241.

[210]

Wagner M, Loy A, Nogueira R, Purkhold U, Lee N, Daims H. Microbial community composition and function in wastewater treatment plants. Antonie Van Leeuwenhoek, 2002, 81(1–4): 665-680.

[211]

WHO (2002) Polychlorinated dibenzodioxins, polychlorinated dibenzofurans, and coplanar polychlorinated biphenyls. In: Safety evaluation of certain food additives and contaminants. Geneva, World Health Organization (WHO Food Additives Series, No 48. https://www.inchem.org/documents/jecfa/jecmono/v48je20.htm)

[212]

WHO (2016) World Health Organization fact sheet No 225, dioxins and their effects on human health, June 1999. https://www.who.int/mediacentre/factsheets/fs225/en/

[213]

Williams PA, Cosme J, Sridhar V, Johnson EF, McRee DE. Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol Cell, 2000, 5(1): 121-131.

[214]

Woeller CF, Thatcher TH, Thakar J, Cornwell A, Smith MR, Jones DP, Hopke PK, Sime PJ, Krahl P, Mallon TM, Phipps RP, Utell MJ. Exposure to heptachlorodibenzo-p-dioxin (HpCDD) regulates microRNA expression in human lung fibroblasts. J Occup Environ Med, 2019, 61(Suppl 12): S82-S89.

[215]

Wu YL, Lin LF, Hsieh LT, Wang LC, Chang-Chien GP. Atmospheric dry deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans in the vicinity of municipal solid waste incinerators. J Hazard Mater, 2009, 162(1): 521-529.

[216]

Xiao K, Yue XH, Chen WC, Zhou XR, Wang L, Xu L, Huang FH, Wan X. Metabolic engineering for enhanced medium chain omega hydroxy fatty acid production in Escherichiacoli. Front Microbiol, 2018, 9: 139.

[217]

Xu C, Hu J, Wu J, Wei B, Zhu Z, Yang L, Zhou T, Jin J. Polychlorinated naphthalenes, polychlorinated dibenzo-p-dioxins and dibenzofurans, and polychlorinated biphenyls in soils in an industrial park in Northwestern China: levels, source apportionment, and potential human health risks. Ecotoxicol Environ Saf, 2020, 188: 109895.

[218]

Yao H, Lu S, Zhang X, Pei J, Lu YT. Pollution status and risks of dioxin-like polychlorinated biphenyls in the soil of the yellow river. Huan jing ke xue= Huanjing kexue, 2018, 39(1): 123-129.

[219]

Yuk HG, Marshall DL. Adaptation of Escherichia coli O157:H7 to pH alters membrane lipid composition, verotoxin secretion, and resistance to simulated gastric fluid acid. Appl Environ Microbiol, 2004, 70(6): 3500-3505.

[220]

Zeng FS, Menardo F, Xue MF, Zhang XJ, Gong SJ, Yang LJ, Shi WQ, Yu DZ. Transcriptome analyses shed new insights into primary metabolism and regulation of Blumeria graminis f. sp. tritici during conidiation. Front Plant Sci, 2017, 8: 1146.

[221]

Zhang M, Buekens A, Li X. Brominated flame retardants and the formation of dioxins and furans in fires and combustion. J Hazard Mater, 2016, 304: 26-39.

[222]

Zhao Y, Chen XY, Xu DY, Zhang SY, Chen ZY. Determination of chlorine in gasoline by inductively coupled plasma atomic emission spectrometry. Guang pu xue yu guang pu fen xi = Guang pu, 2014, 34(12): 3406-3410.

[223]

Zheng GJ, Leung AO, Jiao LP, Wong MH. Polychlorinated dibenzo-p-dioxins and dibenzofurans pollution in China: sources, environmental levels and potential human health impacts. Environ Int, 2008, 34(7): 1050-1061.

[224]

Zhu Z, Ding Y, Gong Z, Yang L, Zhang S, Zhang C, Lin X, Shen H, Zou H, Xie Z, Yang F, Zhao X, Liu P, Zhao ZK. Dynamics of the lipid droplet proteome of the Oleaginous yeast rhodosporidium toruloides. Eukaryot Cell, 2015, 14(3): 252-264.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/