Enzymatic activities and analysis of a mycelium-based composite formation using peach palm (Bactris gasipaes) residues on Lentinula edodes
Gabriel Goetten de Lima , Zaira Chiodini Pedri Schoenherr , Washington Luiz Esteves Magalhães , Lorena Benathar Ballod Tavares , Cristiane Vieira Helm
Bioresources and Bioprocessing ›› 2020, Vol. 7 ›› Issue (1) : 58
Enzymatic activities and analysis of a mycelium-based composite formation using peach palm (Bactris gasipaes) residues on Lentinula edodes
By seeding fungus on top of industry residues, a mycelium can grow and form a compact network structure; however, it may not develop due to lack of optimal nutrients from the substrate. Consequently, peach-palm residues can be a potential alternative; so, to test this hypothesis, this work evaluates the effect of peach-palm residues as substrate for the growth of mycelium based on Lentinula edodes. They were also supplemented with cassava bran and various sources of nitrogen-ammonium sulphate, potassium nitrate, and soy flour—to analyse its effects on its physico-chemical, enzymatic activities, and thermal and mechanical properties of the final composite at 12 and 20 days of cultivation. This mycelium was able to grow at optimum source treatment conditions, which depends on the ratio of Carbon to Nitrogen, within only 12 days of inoculation. Furthermore, the enzyme activities directly correlate with the mycelium growth with optimum conditions of pH, water activity, and moisture for L. edodes to grow having lower enzyme activities for a well-developed composite; whereas higher activities were seen for a weakly developed material, and this material demonstrates mechanical and thermal properties similar to common mycelium-based composites. Therefore, this work demonstrates that peach-palm residues can be a potential alternative for mycelium-based composite.
Filamentous fungi / Agro-industrial residues / Mycelium foams / Enzyme properties / Hydrolytic enzymes
| [1] |
AOAC Official Methods of Analysis. Official Methods of Analysis. Assoc Off Anal Chem Int, 2016, 38: 431. |
| [2] |
ASTM (1990) Standard practice for determining resistance of synthetic polymeric materials to fungi. ASTM G21–90. In: ASTM (ed) 1990 Annual Book of ASTM Standards (eds) ASTM. West Conshohocken, Pennsylvania, pp 845–851 |
| [3] |
ASTM (2017) Standard Test Method for Measuring Compressive Properties of Thermal Insulations. ASTM C165–07. West Conshohocken, Pennsylvania |
| [4] |
ASTM D570–98 (2018) Standard Test for Water Absorption of Plastics. ASTM International: West Conshohocken, Pennsylvania. |
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
British Standards Institution BSI (1993) Particleboards and fibreboards- Determination of swelling in thickness after immersion in water. Ref. no: EN 317: 1993 E. European Committee for Standardization. |
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
EMBRAPA AleloMicro Open Data - BRM 055640. https://alelomicro.cenargen.embrapa.br/InterMicro/Passaporte/detalhes.xjs?ida=102706&lang=en. Accessed 21 Jun 2020 |
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
IBGE (2019) Agricultural Production - Permanent Crops | Peach Palm. https://cidades.ibge.gov.br/brasil/pesquisa/15/11863. Accessed 6 Oct 2020 |
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
Lutz IA (2005) Normas analíticas do Instituto Adolfo Lutz. Métodos Físico-químicos para Análise de Alimentos do Instituto Adolfo Lutz (4th ed.) IAL, Brasília. |
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
Mora-Urpí J, Weber JC, Clement CR (1997) Bactris gasipaes Kunth. Institute of Plant Genetics and Crop Plant Research—IPK: Gatersleben, Germany/International Plant Genetic Resources Institute—IPGRI: Rome, Italy, 1997; Promoting the conservation and use of underutilized and neglected crops, Volume 20, p. 83. |
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
Rabelo SC, da Costa AC, Vaz Rossel CE (2015) Industrial Waste Recovery. In: Sugarcane. Elsevier, pp 365–381 |
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
Ziegler AR, Bajwa SG, Holt GA, McIntyre G, Bajwa DS (2016) Evaluation of physico-mechanical properties of mycelium reinforced green biocomposites made from cellulosic fibers. Eng. Agric. |
/
| 〈 |
|
〉 |