Enzymatic activities and analysis of a mycelium-based composite formation using peach palm (Bactris gasipaes) residues on Lentinula edodes

Gabriel Goetten de Lima , Zaira Chiodini Pedri Schoenherr , Washington Luiz Esteves Magalhães , Lorena Benathar Ballod Tavares , Cristiane Vieira Helm

Bioresources and Bioprocessing ›› 2020, Vol. 7 ›› Issue (1) : 58

PDF
Bioresources and Bioprocessing ›› 2020, Vol. 7 ›› Issue (1) : 58 DOI: 10.1186/s40643-020-00346-2
Research

Enzymatic activities and analysis of a mycelium-based composite formation using peach palm (Bactris gasipaes) residues on Lentinula edodes

Author information +
History +
PDF

Abstract

By seeding fungus on top of industry residues, a mycelium can grow and form a compact network structure; however, it may not develop due to lack of optimal nutrients from the substrate. Consequently, peach-palm residues can be a potential alternative; so, to test this hypothesis, this work evaluates the effect of peach-palm residues as substrate for the growth of mycelium based on Lentinula edodes. They were also supplemented with cassava bran and various sources of nitrogen-ammonium sulphate, potassium nitrate, and soy flour—to analyse its effects on its physico-chemical, enzymatic activities, and thermal and mechanical properties of the final composite at 12 and 20 days of cultivation. This mycelium was able to grow at optimum source treatment conditions, which depends on the ratio of Carbon to Nitrogen, within only 12 days of inoculation. Furthermore, the enzyme activities directly correlate with the mycelium growth with optimum conditions of pH, water activity, and moisture for L. edodes to grow having lower enzyme activities for a well-developed composite; whereas higher activities were seen for a weakly developed material, and this material demonstrates mechanical and thermal properties similar to common mycelium-based composites. Therefore, this work demonstrates that peach-palm residues can be a potential alternative for mycelium-based composite.

Keywords

Filamentous fungi / Agro-industrial residues / Mycelium foams / Enzyme properties / Hydrolytic enzymes

Cite this article

Download citation ▾
Gabriel Goetten de Lima, Zaira Chiodini Pedri Schoenherr, Washington Luiz Esteves Magalhães, Lorena Benathar Ballod Tavares, Cristiane Vieira Helm. Enzymatic activities and analysis of a mycelium-based composite formation using peach palm (Bactris gasipaes) residues on Lentinula edodes. Bioresources and Bioprocessing, 2020, 7(1): 58 DOI:10.1186/s40643-020-00346-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AOAC Official Methods of Analysis. Official Methods of Analysis. Assoc Off Anal Chem Int, 2016, 38: 431.

[2]

ASTM (1990) Standard practice for determining resistance of synthetic polymeric materials to fungi. ASTM G21–90. In: ASTM (ed) 1990 Annual Book of ASTM Standards (eds) ASTM. West Conshohocken, Pennsylvania, pp 845–851

[3]

ASTM (2017) Standard Test Method for Measuring Compressive Properties of Thermal Insulations. ASTM C165–07. West Conshohocken, Pennsylvania

[4]

ASTM D570–98 (2018) Standard Test for Water Absorption of Plastics. ASTM International: West Conshohocken, Pennsylvania.

[5]

Abhijith R, Ashok A, Rejeesh CR. Sustainable packaging applications from mycelium to substitute polystyrene: a review. Mater Today Proc, 2018, 5: 2139-2145.

[6]

Antinori ME, Ceseracciu L, Mancini G, Heredia-Guerrero JA, Athanassiou A. Fine-tuning of physicochemical properties and growth dynamics of mycelium-based materials. ACS Appl Bio Mater, 2020, 3: 1044-1051.

[7]

Antunes F, Marçal S, Taofiq O, Morais AM, Freitas AC, Ferreira IC, Pintado M. Valorization of mushroom by-products as a source of value-added compounds and potential applications. Molecules, 2020, 25: 2672.

[8]

Appels FV, Camere S, Montalti M, Karana E, Jansen KM, Dijksterhuis J, Krijgsheld P, Wösten HA. Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites. Mater Des, 2019, 161: 64-71.

[9]

Ates B, Koytepe S, Ulu A, Gurses C, Thakur VK. Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources. Chem Rev, 2020, 120: 9304-9362.

[10]

Attias N, Danai O, Abitbol T, Tarazi E, Ezov N, Pereman I, Grobman YJ. Mycelium bio-composites in industrial design and architecture: comparative review and experimental analysis. J Clean Prod, 2020, 246: 119037.

[11]

Attias N, Danai O, Tarazi E, Pereman I, Grobman YJ. Implementing bio-design tools to develop mycelium-based products. Des J, 2019, 22: 1647-1657.

[12]

Averous L, Boquillon N. Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohydr Polym, 2004, 56: 111-122.

[13]

Bailey MJ, Biely P, Poutanen K. Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol, 1992, 23: 257-270.

[14]

Bellettini MB, Bellettini S, Vítola FM, Fiorda FA, Junior AM, Soccol CR. Residual compost from the production of Bactris gasipaes Kunth and Pleurotus ostreatus as soil conditioners for Lactuca sativa ‘Veronica’. Semin Ciências Agrárias, 2017, 38: 581.

[15]

Bentolila de Aguiar LV, Sales-Campos C, Melo de Carvalho CS, Almeida Minhoni MT, Nogueira de Andrade MC. Uso de resíduos de madeiras e frutos da amazônia para o cultivo in vitro do cogumelo comestível shiitake. Interciencia, 2013, 1: 585-589.

[16]

Blanchette RA, Obst JR, Timell TE. Biodegradation of compression wood and tension wood by white and brown rot fungi. Holzforschung-Int J Biol Chem Phys Technol Wood, 1994, 48: 34-42.

[17]

Bolanho BC, Danesi EDG, del Pino BA. Characterization of flours made from peach palm (Bactris gasipaes Kunth) by-products as a new food ingredient. J Food Nutr Res, 2014, 53: 51-59.

[18]

British Standards Institution BSI (1993) Particleboards and fibreboards- Determination of swelling in thickness after immersion in water. Ref. no: EN 317: 1993 E. European Committee for Standardization.

[19]

Carvalho EA, Nunes LV, Goes LM, Silva EG, Franco M, Gross E, Uetanabaro AP, Costa AM. Peach-palm ( Bactris gasipaes Kunth.) waste as substrate for xylanase production by Trichoderma stromaticum AM7. Chem Eng Commun, 2018, 205: 975-985.

[20]

Castellani A. Maintenance and cultivation of common pathogenic fungi of man in sterile distilled water. Further Res J Trop Med Hyg, 1967, 20: 1-6.

[21]

Chang ST. Microbial biotechnology—Integrated studies on utilization of solid organic wastes. Resour Conserv, 1987, 13: 75-82.

[22]

Chicatto JA, Costa A, Nunes H, Helm CV, Tavares L. Evaluation of hollocelulase production by Lentinula edodes (Berk.) Pegler during the submerged fermentation growth using RSM. Braz J Biol, 2014, 74: 243-250.

[23]

Chicatto JA, Rainert KT, Gonçalves MJ, Helm CV, Altmajer-Vaz D, Tavares LB. Decolorization of textile industry wastewater in solid state fermentation with Peach-Palm (Bactris gasipaes) residue. Braz J Biol, 2018, 78: 718-727.

[24]

Clement CR, Rodrigues DP, Alves-Pereira A, Mühlen GS, Cristo-Araújo MD, Moreira PA, Lins J, Reis VM. Crop domestication in the upper Madeira River basin. Bol. do Mus. Para Emílio Goeldi Ciências Humanas, 2016, 11: 193-205.

[25]

Couri S, Farias AX. Genetic manipulation of Aspergillus niger for increased synthesis of pectinolytic enzymes. Rev Microbiol, 1995, 26: 314-317.

[26]

EMBRAPA AleloMicro Open Data - BRM 055640. https://alelomicro.cenargen.embrapa.br/InterMicro/Passaporte/detalhes.xjs?ida=102706&lang=en. Accessed 21 Jun 2020

[27]

Elisashvili V, Kachlishvili E, Asatiani MD. Shiitake Medicinal Mushroom, Lentinus edodes (Higher Basidiomycetes) Productivity and Lignocellulolytic Enzyme Profiles during Wheat Straw and Tree Leaf Bioconversion. Int J Med Mushrooms, 2015, 17: 77-86.

[28]

Elisashvili V, Penninckx M, Kachlishvili E, Tsiklauri N, Metreveli E, Kharziani T, Kvesitadze G. Lentinus edodes and Pleurotus species lignocellulolytic enzymes activity in submerged and solid-state fermentation of lignocellulosic wastes of different composition. Bioresour Technol, 2008, 99: 457-462.

[29]

Franco TS, Potulski DC, Viana LC, Forville E, de Andrade AS, de Muniz GI. Nanocellulose obtained from residues of peach palm extraction (Bactris gasipaes). Carbohydr Polym, 2019, 218: 8-19.

[30]

Gaitán-Hernández R, Esqueda M, Gutiérrez A, Beltrán-García M. Quantitative changes in the biochemical composition of lignocellulosic residues during the vegetative growth of Lentinula edodes. Braz J Microbiol, 2011, 42: 30-40.

[31]

Glass N. Hyphal homing, fusion and mycelial interconnectedness. Trends Microbiol, 2004, 12: 135-141.

[32]

Haneef M, Ceseracciu L, Canale C, Bayer IS, Heredia-Guerrero JA, Athanassiou A. Advanced materials from fungal mycelium: fabrication and tuning of physical properties. Sci Rep, 2017, 7: 41292.

[33]

Helm CV, Raupp DDS, dos Santos ÁF. Development of peach palm fibrous flour from the waste generated by the heart of palm agribusiness -, 2013

[34]

Hermann KL, Costa A, Helm CV, Lima EA, Tavares LB. Expression of manganese peroxidase by Lentinula edodes and Lentinula boryana in solid state and submerged system fermentation. An Acad Bras Cienc, 2013, 85: 965-973.

[35]

IBGE (2019) Agricultural Production - Permanent Crops | Peach Palm. https://cidades.ibge.gov.br/brasil/pesquisa/15/11863. Accessed 6 Oct 2020

[36]

Islam MR, Tudryn G, Bucinell R, Schadler L, Picu RC. Morphology and mechanics of fungal mycelium. Sci Rep, 2017, 7: 13070.

[37]

Islam MR, Tudryn G, Bucinell R, Schadler L, Picu RC. Mechanical behavior of mycelium-based particulate composites. J Mater Sci, 2018, 53: 16371-16382.

[38]

Jones M, Bhat T, Huynh T, Kandare E, Yuen R, Wang CH, John S. Waste-derived low-cost mycelium composite construction materials with improved fire safety. Fire Mater, 2018, 42: 816-825.

[39]

Jones M, Bhat T, Kandare E, Thomas A, Joseph P, Dekiwadia C, Yuen R, John S, Ma J, Wang CH. Thermal degradation and fire properties of fungal mycelium and mycelium - biomass composite materials. Sci Rep, 2018, 8: 17583.

[40]

Jones M, Huynh T, Dekiwadia C, Daver F, John S. Mycelium composites: a review of engineering characteristics and growth kinetics. J Bionanosci, 2017, 11: 241-257.

[41]

Jones M, Mautner A, Luenco S, Bismarck A, John S. Engineered mycelium composite construction materials from fungal biorefineries: a critical review. Mater Des, 2020, 187: 108397.

[42]

Kraus JE, Arduin M. Manual básico de métodos em morfologia vegetal, 1997, Rio de Janeiro: EDUR Seropédica.

[43]

Kües U, Liu Y. Fruiting body production in basidiomycetes. Appl Microbiol Biotechnol, 2000, 54: 141-152.

[44]

Leonowicz A, Wojtas-Wasilewska M, Rogalski J, Luterek J. Higher fungi as a potential feed and food source from lignocellulosic wastes. Stud Environ Sci, 1991, 42: 229-255.

[45]

Lin Y, Ge X, Liu Z, Li Y. Integration of Shiitake cultivation and solid-state anaerobic digestion for utilization of woody biomass. Bioresour Technol, 2015, 182: 128-135.

[46]

Liu R, Li X, Long L, Sheng Y, Xu J, Wang Y. Improvement of mechanical properties of mycelium/cotton stalk composites by water immersion. Compos Interfaces, 2020

[47]

Lutz IA (2005) Normas analíticas do Instituto Adolfo Lutz. Métodos Físico-químicos para Análise de Alimentos do Instituto Adolfo Lutz (4th ed.) IAL, Brasília.

[48]

Mata G, Salmones D, Pérez-Merlo R. Hydrolytic enzyme activities in shiitake mushroom (Lentinula edodes) strains cultivated on coffee pulp. Rev Argent Microbiol, 2016, 48: 191-195.

[49]

Matos MP, Teixeira JL, Nascimento BL, Griza S, Holanda FS, Marino RH. Production of biocomposites from the reuse of coconut powder colonized by Shiitake mushroom. Ciência e Agrotecnologia, 2019

[50]

Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem, 1959, 31: 426-428.

[51]

Mora-Urpí J, Weber JC, Clement CR (1997) Bactris gasipaes Kunth. Institute of Plant Genetics and Crop Plant Research—IPK: Gatersleben, Germany/International Plant Genetic Resources Institute—IPGRI: Rome, Italy, 1997; Promoting the conservation and use of underutilized and neglected crops, Volume 20, p. 83.

[52]

de Oliveira KT, Patreze CM, Salgueiro F. High-resolution melting analysis for testing the authenticity of fresh and canned heart of palm, an economically important non-timber forest product from the Neotropics. Plant Ecol Divers, 2019, 12: 181-187.

[53]

Pandey A, Soccol CR, Mitchell D. New developments in solid state fermentation: I-bioprocesses and products. Process Biochem, 2000, 35: 1153-1169.

[54]

Pedri ZC, Lozano LM, Hermann KL, Helm CV, Peralta RM, Tavares LB. Influence of nitrogen sources on the enzymatic activity and grown by Lentinula edodes in biomass Eucalyptus benthamii. Braz J Biol, 2015, 75: 940-947.

[55]

Peniche-Covas C, Jiménez MS, Núñez A. Characterization of silver-binding chitosan by thermal analysis and electron impact mass spectrometry. Carbohydr Polym, 1988, 9: 249-256.

[56]

Philippoussis A, Diamantopoulou P, Papadopoulou K, Lakhtar H, Roussos S, Parissopoulos G, Papanikolaou S. Biomass, laccase and endoglucanase production by Lentinula edodes during solid state fermentation of reed grass, bean stalks and wheat straw residues. World J Microbiol Biotechnol, 2011, 27: 285-297.

[57]

Queiroz EC, Marino RH, da Eira AF. Mineral supplementation and productivity of the Shiitake mushroom on eucalyptus logs. Sci Agric, 2004, 61: 260-265.

[58]

Rabelo SC, da Costa AC, Vaz Rossel CE (2015) Industrial Waste Recovery. In: Sugarcane. Elsevier, pp 365–381

[59]

Rodríguez J, Ferraz A, Nogueira RF, Ferrer I, Esposito E, Durán N. Lignin biodegradation by the ascomycete Chrysonilia sitophila. Appl Biochem Biotechnol, 1997, 62: 233-242.

[60]

Rughoonundun H, Mohee R, Holtzapple MT. Influence of carbon-to-nitrogen ratio on the mixed-acid fermentation of wastewater sludge and pretreated bagasse. Bioresour Technol, 2012, 112: 91-97.

[61]

Seben LDL, De-Paula IC, Viana SG. Análise do processo de beneficiamento da Palmeira Real da Austrália (palmito em conserva) para determinação das variáveis que influenciam as operações de valorização de seus resíduos. Prod Produção, 2012

[62]

Singha AS, Thakur VK. Fabrication and characterization of S. cilliare fibre reinforced polymer composites. Bull Mater Sci, 2009, 32: 49-58.

[63]

de Siqueira FG, de Siqueira AG, de Siqueira EG, Carvalho MA, Peretti BM, Jaramillo PM, Teixeira RS, Dias ES, Félix CR, Ferreira Filho EX. Evaluation of holocellulase production by plant-degrading fungi grown on agro-industrial residues. Biodegradation, 2010, 21: 815-824.

[64]

Song CH, Cho KY, Nair NG. A synthetic medium for the production of submerged cultures of Lentinus Edodes. Mycologia, 1987, 79: 866-876.

[65]

Stella T, Covino S, Čvančarová M, Filipová A, Petruccioli M, D’Annibale A, Cajthaml T. Bioremediation of long-term PCB-contaminated soil by white-rot fungi. J Hazard Mater, 2017, 324: 701-710.

[66]

Tacer-Caba Z, Varis JJ, Lankinen P, Mikkonen KS. Comparison of novel fungal mycelia strains and sustainable growth substrates to produce humidity-resistant biocomposites. Mater Des, 2020, 192: 108728.

[67]

Tanaka M, Taniguchi M, Matsuno R, Kamikubo T. Purification and properties of cellulases from Eupencillium javanicum: studies on the re-utilization of cellulosic resources (VII). J Ferment Technol, 1981, 59: 177-183.

[68]

Teixeira JL, Matos MP, Nascimento BL, Griza S, Holanda FS, Marino RH. Production and mechanical evaluation of biodegradable composites by white rot fungi. Ciência e Agrotecnologia, 2018, 42: 676-684.

[69]

Wood TM, Garcia-Campayo V. Enzymology of cellulose degradation. Biodegradation, 1990, 1: 147-161.

[70]

Xie Q, Li F, Li J, Wang L, Li Y, Zhang C, Xu J, Chen S. A new biodegradable sisal fiber–starch packing composite with nest structure. Carbohydr Polym, 2018, 189: 56-64.

[71]

Zeller P, Zocher D. Ecovative’s breakthrough biomaterials. Fungi Mag, 2012, 5: 51-56.

[72]

Zenni RDS, Helm CV, Tavares LBB. Cascas do processamento de palmito para uso na alimentação humana: uma abordagem socioambiental. Rev Gestão Sustentabilidade Ambient, 2018, 7: 276.

[73]

Ziegler AR, Bajwa SG, Holt GA, Mcntyre G. Evaluation of physico-mechanical properties of mycelium reinforced green biocomposites made from cellulosic fibers. Appl Eng Agric, 2016, 32: 931-938.

[74]

Ziegler AR, Bajwa SG, Holt GA, McIntyre G, Bajwa DS (2016) Evaluation of physico-mechanical properties of mycelium reinforced green biocomposites made from cellulosic fibers. Eng. Agric.

Funding

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior(001)

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/