Fibre attributes and mapping the cultivar influence of different industrial cellulosic crops (cotton, hemp, flax, and canola) on textile properties

Ikra Iftekhar Shuvo

Bioresources and Bioprocessing ›› 2020, Vol. 7 ›› Issue (1) : 51

PDF
Bioresources and Bioprocessing ›› 2020, Vol. 7 ›› Issue (1) : 51 DOI: 10.1186/s40643-020-00339-1
Review

Fibre attributes and mapping the cultivar influence of different industrial cellulosic crops (cotton, hemp, flax, and canola) on textile properties

Author information +
History +
PDF

Abstract

Natural lignocellulosic fibres (NLF) extracted from different industrial crops (like cotton, hemp, flax, and canola) have taken a growing share of the overall global use of natural fibres required for manufacturing consumer apparels and textile substrate. The attributes of these constituent NLF determine the end product (textiles) performance and function. Structural and microscopic studies have highlighted the key behaviors of these NLF and understanding these behaviors is essential to regulate their industrial production, engineering applications, and harness their benefits. Breakthrough scientific successes have demonstrated textile fibre properties and significantly different mechanical and structural behavioral patterns related to different cultivars of NLF, but a broader agenda is needed to study these behaviors. Influence of key fibre attributes of NLF and properties of different cultivars on the performance of textiles are defined in this review. A likelihood analysis using scattergram and Pearson’s correlation followed by a two-dimensional principal component analysis (PCA) to single-out key properties explain the variations and investigate the probabilities of any cluster of similar fibre profiles. Finally, a Weibull distribution determined probabilistic breaking tenacities of different fibres after statistical analysis of more than 60 (N > 60) cultivars of cotton, canola, flax, and hemp fibres.

Keywords

Cellulose / Industrial crops / Cultivar / Textile / Fibre property

Cite this article

Download citation ▾
Ikra Iftekhar Shuvo. Fibre attributes and mapping the cultivar influence of different industrial cellulosic crops (cotton, hemp, flax, and canola) on textile properties. Bioresources and Bioprocessing, 2020, 7(1): 51 DOI:10.1186/s40643-020-00339-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdellatif KF, Khidr YA, El-Mansy YM, El-Lawendey MM, Soliman YA. Molecular diversity of Egyptian cotton (Gossypium barbadense L.) and its relation to varietal development. J Crop Sci Biotechnol, 2012, 15(2): 93-99.

[2]

Akin DE, Dodd RB, Perkins W, Henriksson G, Eriksson KEL. Spray enzymatic retting: a new method for processing flax fibers. Text Res J, 2000, 70: 486-494.

[3]

Akin DE, Foulk JA, Dodd RB, McAlister DD III. Enzyme-retting of flax and characterization of processed fibers. J Biotechnol, 2001, 89: 193-203.

[4]

Akin DE, Dodd RB, Foulk JA. Pilot plant for processing flax fiber. Ind Crops Prod, 2005, 21(3): 369-378.

[5]

Ali A, Rahman M, Chen Y. Cotton spinning properties of chemically modified hemp fibres. Int J Sci Res, 2015, 4(8): 1482-1490.

[6]

ASTM International (2017) ASTM D123-17 standard terminology relating to textiles. https://doi-org.uml.idm.oclc.org/10.1520/D0123-17

[7]

Bacci L, Di Lonardo S, Albanese L, Mastromei G, Perito B. Effect of different extraction methods on fiber quality of nettle (Urtica dioica L.). Text Res J, 2011, 81(8): 827-837.

[8]

Bambach MR. Compression strength of natural fibre composite plates and sections of flax, jute and hemp. Thin-Walled Struct, 2017, 119: 103-113.

[9]

Basu G, Samanta AKM, Ghosh P. Enzyme and silicone treatments on jute fibre. Part II: effect on process performance during yarn making and yarn properties. J Textile Inst, 2008, 99(4): 307-316.

[10]

Bergfjord C, Bodil H. A procedure for identifying textile bast fibres using microscopy: flax, nettle/ramie, hemp and jute. Ultramicroscopy, 2010, 110(9): 1192-1197.

[11]

Blackburn RS. Consumer perceptions of recycled textile fibres. Sustainable textiles: life cycle and environmental impact, 2009, Cambridge: Woodhead Publishing Limited, 203-211.

[12]

Bonatti P, Ferrari C, Focher B, Grippo C, Torri G, Cosentino C. Histochemical and supramolecular studies in determining quality of hemp fibres for textile applications. Euphytica, 2004, 140(1): 55-64.

[13]

Booth JE. Principles of textile testing: an introduction to physical methods of testing textile fibres, yarns and fabrics, 1968, 3, London: Heywood Books.

[14]

Broadbent AD. Basic principles of textile coloration, 2001, Bradford: Society of Dyers and Colorists.

[15]

Buschle-Diller G, Fanter C, Loth F. Structural changes in hemp fibers as a result of enzymatic hydrolysis with mixed enzyme systems. Text Res J, 1999, 69(4): 244-251.

[16]

Canoglu S, Tanir SK. Studies on yarn hairiness of polyester/cotton blended ring-spun yarns made from different blend ratios. Text Res J, 2009, 79(3): 235-242.

[17]

Canola Council of Canada (2017) 50 years of firsts. In: Annual reports. https://www.Brassicacouncil.org/what-we-do/annual-reports/

[18]

Carr DJ, Cruthers NM, Laing RM, Niven BE. Fibers from three cultivars of New Zealand flax (Phormium tenax). Text Res J, 2005, 75(2): 93-98.

[19]

Celik HI. Effects of fiber linear density on acrylic carpet performance. J Eng Fibers Fabr, 2017, 12(1): 1-11.

[20]

Chawla KK. Composite materials, 2012, New York: Springer

[21]

Chen X. Modelling and predicting textile behaviour, 2010, Cambridge: Woodhead Publishing.

[22]

Chougule VB, Patil UJ, Patil LG. Evaluation of cluster fault setting of electronic yarn clearer on yarn quality. Textile Trends, 2016, 59(5): 37-47.

[23]

Cook JG (2012) Handbook of textile fibres. Volume 1, Natural fibers. Woodhead Publishing Limited, Cambridge, England

[24]

Cotton Incorporated (2018) In: Classification of cotton. http://www.cottoninc.com/fiber/quality/Classification-Of-Cotton/Overview/

[25]

Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IA. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 2000, 408: 184.

[26]

Cromack HTH. The effect of cultivar and seed density on the production and fibre content of Cannabis sativa in southern England. Ind Crops Prod, 1998, 7(2–3): 205-210.

[27]

Cruthers NM, Carr DJ, Niven BE, Girvan E, Laing RM. Methods for characterizing plant fibers. Microsc Res Tech, 2005, 67(5): 260-264.

[28]

Deleuran LC, Flengmark PK. Yield potential of hemp (Cannabis sativa L.) cultivars in Denmark. J Ind Hemp, 2006, 10(2): 19-31.

[29]

Edeerozey AM, Akhil MH, Azhar AB, Ariffin MIZ. Chemical modification of kenaf fibres. Mater Lett, 2007, 61: 2023-2025.

[30]

El-Messiry M, Abd-Ellatif SAM. Prediction of extra-long Egyptian yarn tenacity using fibre quality index (MFQI). Fibres Textiles East Eur, 2013, 21(3): 31-35.

[31]

Fan M, Dai D, Huang B (2012) Fourier transform infrared spectroscopy for natural fibres. In: Dr Salih S (ed), Fourier transform—materials analysis. Shanghai: InTech. http://cdn.intechopen.com/pdfs/37067/InTechFourier_transform_infrared_spectroscopy_for_natural_fibres.pdf

[32]

Farag R, Elmogahzy Y. Bunsell AR. Tensile properties of cotton fibers. Handbook of tensile properties of textile and technical fibres, 2009, Cambridge: Woodhead Publishing in association with the Textile Institute, 51-72.

[33]

Gajjar CR, King MW (2014) Biotextiles: fiber to fabric for medical applications. In: Resorbable fiber-forming polymers for biotextile applications, pp 20. Springer, Cham, New York

[34]

Gall ML, Davies P, Martin N, Baley C. Recommended flax fibre density values for composite property predictions. Ind Crops Prod, 2018, 114: 52-58.

[35]

Grigoryev S. Hemp of Russian northern regions as a source of spinning fibers. J Ind Hemp, 2005, 10(2): 105-114.

[36]

Hanks A. Canadian Hemp update 2007. J Ind Hemp, 2008, 13(1): 49-57.

[37]

Hatch KL. Fiber properties and identification. Textile science, 1993, Minneapolis-Saint Paul: West Publishing Company, 108-127.

[38]

Hearle JWS, Morton WE. Physical properties of textile fibres, 2008, 4, Cambridge: Woodhead Publishing Ltd..

[39]

Hoque SMA, Azim AYM. Using enzymes as an aid of better and eco-friendly scouring processing. Am J Eng Res, 2016, 5(6): 167-182.

[40]

Horrocks AR, Anand SC. Handbook of technical textiles, 2000, Cambridge, England: Woodhead Publishing Limited

[41]

Inc Invista. Invista launches activewear sock fabrics. Knitting Int, 2009, 115(1372): 16.

[42]

Jankauskienė Z, Butkutė B, Gruzdevienė E, Cesevičienė J, Fernando AL. Chemical composition and physical properties of dew- and water-retted hemp fibers. Ind Crops Prod, 2015, 75: 206-211.

[43]

Khan MRI (2016) Evaluation of Brassica fibre for textile and spinning properties (master’s thesis). University of Manitoba, Winnipeg, Canada

[44]

King MJ, Vincent JFV. Static and dynamic fracture properties of the leaf of New Zealand flax phormium tenax (Phormiaceae: Monocotyledones). Proc R Soc Lond Ser B, 1996, 263: 521-527.

[45]

Klein W (2016) The Rieter manual of spinning (Volume 1). Wintherthur: Rieter Machine Works Ltd. ISBN 10 3-9523173-1-4/ISBN 13 978-3-9523173-1-0. http://www.rieter.com/en/machines-systems/news-center/the-rieter-manualof-spinning/

[46]

Kozłowski R. Handbook of natural fibres:, 2012, Cambridge: Woodhead Publication.

[47]

Kozłowski R. Handbook of natural fibres, 2012, Cambridge: Woodhead Publication.

[48]

Kozlowski RM, Mackiewicz-Talarczyk M, Muzyczek M, Barriga-Bedoya J. Future of natural fibers, their coexistence and competition with man-made fibers in 21st century. Mol Crystals Liquid Crystals, 2012, 556: 200-222.

[49]

Li Y, Mai VW, Ye L. Sisal fiber and its composites: a review of recent developments. Compos Sci Technol, 2000, 60(11): 2037-2055.

[50]

Lowe BJ, Carr DJ, McCallum RE, Myers T, Ngarimu-Cameron R, Niven BE. Understanding the variability of vegetable fibres: a case study of harakeke (Phormium tenax). Text Res J, 2010, 80(20): 2158-2166.

[51]

Marriott PE, Gómez LD, McQueen-Mason SJ. Unlocking the potential of lignocellulosic biomass through plant science. New Phytol, 2016, 209: 1366-1381.

[52]

Mather RR, Wardman RH (2011) Chemistry of textile fibres (pp 3). London: Royal Society of Chemistry. Electronic ISBN 978-1-62198-202-9. Reproduced by permission of The Royal Society of Chemistry. https://app.knovel.com/hotlink/pdf/id:kt00A7TQR5/chemistry-textilefibres/classification-textile

[53]

McIntyre JE. Synthetic fibres: nylon, polyester, acrylic, polyolefin, 2005, Cambridge: Woodhead Publication Limited.

[54]

Mead HM. Te Whatu Taniko, Taniko weaving techniques and tradition, 1999, 2, Auckland: Reed Books.

[55]

Mediavilla V, Bassetti P, Leupin M, Mosimann E. Agronomic characteristics of some hemp genotypes. J Int Hemp Assoc, 1999, 6(2): 48-53.

[56]

Meents MJ, Watanabe Y, Samuels AL. The cell biology of secondary cell wall biosynthesis. Ann Bot, 2018, 121: 1107-1125.

[57]

Menge-Hartmann U, Hӧppner F. Influence of varied cultivation conditions on the fiber formation of two fiber hemp varieties. Landbauforschung Vӧlkenrode, 1995, 4: 168-176.

[58]

Messiry ME, Abd-Ellatif SAM. Characterization of Egyptian cotton fibres. Indian J Fibre Text Res, 2013, 38: 109-113.

[59]

Mohiuddin G, Talukder SH, Lutfar LB, Sobhan MA, Kabir MK. Upgrading of low-grade jute and cuttings part iii: large-scale application and the processing of jute fibres by means of enzymes. J Textile Inst, 1992, 83(4): 537-541.

[60]

Morton WE, Hearle JWS. Physical properties of textile fibres, 2008, Cambridge, England: Woodhead Publishing Limited.

[61]

Natarajan KS, Khandelwal S, Agrawal M. Regenerated cellulose fibre—Lyocell. Indian Textile J, 2005, 115(7): 19-21.

[62]

PR Newswire (2015) LIU post prepares students to enter trillion-dollar fashion merchandising industry. PR Newswire Association LLC, New York, USA. https://www.prnewswire.com/news-releases/liu-post-prepares-students-to-enter-trillion-dollar-fashion-merchandising-industry-300141072.html

[63]

Parvinzadeh M, Memari N, Shaver M, Katozian B, Ahmadi S, Ziadi I. Influence of ultrasonic waves on the processing of cotton with cationic softener. J Surfactants Deterg, 2010, 13(2): 135-141.

[64]

Pendergrast M. Te aho tapu, the sacred thread, traditional Mäori weaving, 1987, Auckland: Reed Books.

[65]

Poehlman JM, Sleper DA. Breeding field crops, 1995, Ames: Iowa State University Press.

[66]

Pothan LA, Oommen Z, Thomas S. Dynamic mechanical analysis of banana fiber reinforced polyester composites. Compos Sci Technol, 2003, 63: 283-293.

[67]

Qiu R, Ren X, Fifield LS, Simmons KL, Li K. Hemp-fiber-reinforced unsaturated polyester composites: optimization of processing and improvement of interfacial adhesion. J Appl Polym Sci, 2011, 121: 862-868.

[68]

Radhakrishnaiah P, Tejatanalert S, Sawhney APS. Handle and comfort properties of woven fabrics made from random blend and cotton-covered cotton/polyester yarns. Text Res J, 1993, 63(10): 573-579.

[69]

Ramaswamy GN, Ruff CG, Boyd CR. Effect of bacterial and chemical retting on kenaf fiber quality. Text Res J, 1994, 64(5): 305-308.

[70]

Ramaswamy GN, Craft S, Wartelle L. Uniformity and softness of kenaf fibres for textile products. Text Res J, 1995, 65(12): 765-770.

[71]

Rana AK, Mandal A, Bandyopadhyay S. Short jute fiber reinforced polypropylene composites: effect of compatibiliser, impact modifier and fiber loading. Compos Sci Technol, 2003, 63: 801-806.

[72]

Reiter (2018) (Graphic illustration showing the relationship between fibre breaking strength and yarn breaking strength). Fibre tenacity and fibre elongation. http://www.rieter.com/en/rikipedia/articles/rotor-spinning/applications-engineering/fiber-properties/fiber-tenacity-and-fiber-elongation/

[73]

Rowell RM, Han JS, Rowell JS (2000) Characterization and factors effecting fiber properties. In: Frollini E, Leao AL, Mattoso LHC (eds), Natural polymers and agrofibers based composites: preparation, properties and applications. Embrapa Instrumenta¸ cao Agropecuaria, Sao Carlos, Brazil

[74]

Roy S, Lutfar LB. Kozlowski Ryszard M. Bast fibres: jute. Handbook of natural fibres: volume 1 types, properties and factors affecting breeding and cultivation, 2012, 1, Cambridge: Woodhead Publishing Limited, 24-46.

[75]

Saha P, Manna S, Chowdhury SR, Sen R, Roy D, Adhikari B. Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment. Bioresour Technol, 2010, 101: 3182-3187.

[76]

Salmon-Minotte J, Franck RR. Franck RR. Flax. Bast and other plant fibres, 2005, Cambridge: Woodhead Publishing in association with Textile Institute, 94-175.

[77]

Sankari HS. Comparison of bast fibre yield and mechanical fibre properties of hemp (Cannabis sativa L.) cultivars. Ind Crops Prod, 2000, 11: 73-84.

[78]

Saville BP. Physical testing of textiles, 1999, Cambridge: England Wood head Publishing Ltd

[79]

Sayeed MMA, Paharia A. Optimisation of the surface treatment of jute fibres for natural fibre reinforced polymer composites using Weibull analysis. J Textile Inst, 2019, 110(11): 1588-1595.

[80]

Scheele S, Walls G. Harakeke the rene orchiston collection, 1994, Lincoln: Manaaki Whenua Press.

[81]

Sevenhuysen GP, Rahman M (2016) Textile fibres and textiles from Brassica plants. Patent no. WO2015039243 A1

[82]

Shuvo II (2019) A smart textile fibre from biomass of Brassica napus L. and the impact of cultivar on fibre quality (master’s thesis). University of Manitoba, Winnipeg, Canada

[83]

Shuvo II, Rahman M, Vahora T, Morrison J, Ducharme S, Choo-smith LP (2019) Producing light-weight bast fibres from canola biomass for technical textiles. Textile Research Journal. (Accepted)

[84]

Sinha AK (1997) Jute working towards a new fabric. Textile Design Rev 775:XL–XLIII

[85]

Spicka N, Tavcer PF. Complete enzymatic pre-treatment of cotton fabric with an incorporated bleach activator. Textile Res J, 2013, 83(6): 566-573.

[86]

Sridach W, Paladsongkhram R. Improvement of hardwood kraft paper with narrow-leaved cattail fiber, cationic starch and asa. Cellulose Chem Technol, 2014, 48(3–4): 375-383.

[87]

Statista (2018) Leading producing countries of rapeseed in 2016/2017 (in million metric tons). In: Rapeseed production volume worldwide by country 2016/2017. https://www.statista.com/statistics/263930/worldwide-production-of-rapeseed-by-country/

[88]

Stueber O. Yarn quality control for automatic rotor-spinning-winding. Int Textile Bull Yarn Forming, 1985, 31: 57.

[89]

Tallant JD, Fiori LA, Lagendre DC. The effect of the short fibers in cotton on its processing efficiency and product quality. Text Res J, 1959, 29(9): 687-695.

[90]

Tashiro K, Kobayashi M. Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer, 1991, 32(8): 1516-1526.

[91]

Thomas S, Paul SA, Pothan LA, Deepa B (2011) natural fibres: structure, properties and applications. In: Kalia S, Kaith BS, Kaur I (eds) Cellulose fibers: Bio- and nano-polymer composites; Green chemistry and technology (pp 3–42). New York: Springer. https://doi.org/10.1080/15440478.2011.626189 http://doi.org/10.1007/978-3-642-17370-7

[92]

Tofanica BM, Cappelletto E, Gavrilescu D, Mueller K. Properties of rapeseed (Brassica napus) stalks fibers. J Nat Fibers, 2011, 8(4): 241-262.

[93]

Trotman ER. Dyeing and chemical technology of textile fibres, 1984, 6, London: Charles Griffin & Company Ltd..

[94]

Vadicherla T, Saravanan D, Muthu SSK. Muthu S. Polyester recycling—technologies, characterisation, and applications. Environmental implications of recycling and recycled products, 2015, Singapore: Springer.

[95]

Van de Weyenber I, Ivens J, De Coster A, Kino B, Baetens E, Verpoest I. Influence of processing and chemical treatment of flax fibers on their composites. Compos Sci Technol, 2003, 63: 1241-1246.

[96]

Van Sumere CF. Sharma HSS, Van Sumere CF. Retting of flax with special reference to enzyme-retting. The biology and processing of flax, 1992, Belfast: M Publications, 157-198.

[97]

Wang HM, Postle R. Removing pectin and lignin during chemical processing of hemp for textile applications. Text Res J, 2003, 73(8): 664-669.

[98]

Wang F, Shao J. Modified Weibull distribution for analyzing the tensile strength of bamboo fibers. Polymers, 2014, 6(12): 3005-3018.

[99]

Watkins P. The anatomy of new linen. Apparel International, 1998, 12: 23-24.

[100]

Watts M (2009) Crude politics: Life and death on the Nigerian oil fields. In: Niger delta economies of violence working papers, Institute of International Studies, University of California (working paper no 25). Washington DC: The United States Institute of Peace. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.518.4318&rep=rep1&type=pdf

[101]

Werf HVD, Mathussen EWJM, Haverkort AJ. The potential of hemp (Cannabis sativa L.) for sustainable fibre production: a crop physiological appraisal. Ann Appl Biol, 1996, 129(1): 109-123.

[102]

World Wildlife Fund (2000) The impact of cotton on fresh water resources and ecosystems. http://wwf.panda.org/?3686/The-impact-of-cotton-on-fresh-water-resources-and-ecosystems

[103]

Yadav VK, Joshi SD, Ishtiaque SM, Chatterjee JK. Yarn fault classification: a signal processing approach using multiple projections. J Text Inst, 2015, 106(2): 197-205.

[104]

Zafeiropoulos NE, Baillie CA, Hodgkinson JM. Engineering and characterisation of the interface in flax fibre/polypropylene composite materials, part II: the effect of surface treatments on the interface. Compos A Appl Sci Manuf, 2002, 33A(9): 1185-1190.

[105]

Zhang J, Zhang J. Effect of refined processing on the physical and chemical properties of hemp bast fibers. Textile Res J, 2010, 80(8): 744-753.

[106]

Zhang H, Zhang J. Effect of alkali treatment on the quality of hemp fiber. J Eng Fibers Fabrics, 2014, 9(2): 19-24.

[107]

Ziabicki A. Fundamentals of fibre formation, 1976, London: Wiley.

[108]

Zimmermann T, Pöhlerand E, Geiger T. Cellulose fibrils for polymer reinforcement. Adv Eng Mater, 2004, 6(9): 754-761.

[109]

Zonta JH, Bezerra JRC, Sofiatti V, Farias FJC, Carvalho LPD (2015) Effect of irrigation on yield and quality of fibers in herbaceous cotton cultivars. Revista Caatinga, 28(4). http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1983-21252015000400043&lng=pt&tlng=pt

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/