Influence of culture conditions on the production of extracellular polymeric substances (EPS) by Arthrospira platensis

Mariana B. F. Silva , Edwin G. Azero , Cláudia M. L. L. Teixeira , Cristina T. Andrade

Bioresources and Bioprocessing ›› 2020, Vol. 7 ›› Issue (1) : 47

PDF
Bioresources and Bioprocessing ›› 2020, Vol. 7 ›› Issue (1) : 47 DOI: 10.1186/s40643-020-00337-3
Research

Influence of culture conditions on the production of extracellular polymeric substances (EPS) by Arthrospira platensis

Author information +
History +
PDF

Abstract

Arthrospira platensis is a cyanobacterium that is of great biotechnological interest, particularly for the food industry, as it possesses a high content of proteins, pigments, lipids and carbohydrates. Cyanobacteria produce extracellular polymeric substances (EPS), which are co-products of secondary metabolism that present thickening or gelling properties. A 3-level factorial design was used to study the combined effect of different nitrate concentrations and photon flux density (PFD) values to evaluate the biomass and EPS production of A. platensis. The best result in terms of biomass production was obtained under condition 6 (2 g L−1 NaNO3 and 600 μE m−2 s−1) yielding a concentration of 1.292 g L−1. However, condition 1 (0.25 g L−1 NaNO3 and 200 μE m−2 s−1) produced the greatest EPS yield (111 mg g−1), followed by condition 9 (2 g L−1 NaNO3 and 1000 μE m−2 s−1). FTIR analyses of EPS samples indicated the presence of carboxylate and sulfate functional groups, and rheological studies of the EPS at 5 and 10 g L−1 revealed a dilute solution behavior.

Keywords

Arthrospira platensis / Cyanobacteria / Extracellular polymeric substances

Cite this article

Download citation ▾
Mariana B. F. Silva, Edwin G. Azero, Cláudia M. L. L. Teixeira, Cristina T. Andrade. Influence of culture conditions on the production of extracellular polymeric substances (EPS) by Arthrospira platensis. Bioresources and Bioprocessing, 2020, 7(1): 47 DOI:10.1186/s40643-020-00337-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahmed M, Poortvliet TCWM, Wijnholds A, Staland LJ, Hasnain S. Isolation, characterization and localization of extracellular polymeric substances from the cyanobacterium Arthrospira platensis strain MMG-9. Eur J Phycol, 2014, 49: 143-150.

[2]

Aikawa S, Izumi Y, Matsuda F, Hasunuma T, Chang JS, Kondo A. Synergistic enhancement of glycogen production in Arthrospira platensis by optimization of light intensity and nitrate supply. Bioresour Technol, 2012, 108: 211-215.

[3]

Arad S, Levy-Ontman O. Red microalgae cell-wall polysaccharides: biotechnological aspects. Curr Opin Biotechnol, 2010, 21: 358-364.

[4]

Azero EG, Andrade CT. Characterization of Prosopis juliflora seed gum and the effect of its addition to k-carrageenan systems. J Braz Chem Soc, 2006, 17: 844-850.

[5]

Baldev E, MubarakAli D, Shriraman R, Pandiaraj D, Alharbi NS, Thajuddin N. Extraction and partial characterization of exopolysaccharidesfrom marine cyanobacteria and their flocculation property. Res J Environ Sci, 2015, 9(1): 28-38.

[6]

Budarin V, Ross AB, Biller P, Riley R, Clark JH, Jones JM, Gilmour DJ, Zimmerman W. Microalgae biorefinery concept based on hydrothermal microwave pyrolysis. Green Chem, 2012, 14: 3251-3254.

[7]

Can HK, Gurbuz F, Odabas M. Partial characterization of cyanobacterial extracellular polymeric substances for aquatic ecosystems. Aquat Ecol, 2019, 53: 431-440.

[8]

Carvalho AP, Silva SO, Baptista JM, Malcata FX. Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl Microbiol Biotechnol, 2011, 89: 1275-1288.

[9]

Challouf R, Trabelsi L, Dhieb BR, El Abed O, Yahia A, Ghozzi K, Ammar JB, Omran H, Ouada BH. Evaluation of cytotoxicity and biological activities in extracellular polysaccharides released by Cyanobacterium Arthrospira platensis. Braz Arch Biol Technol, 2011, 54: 831-838.

[10]

Chentir I, Hamdi M, Doumandji A, HadjSadok A, Ouada HB, Nasri M, Jridi M. Enhancement of extracellular polymeric substances (EPS) production in Spirulina (Arthrospira sp.) by two-step cultivation process and partial characterization of their polysaccharidic moiety. Int J Biol Macromol, 2017, 105: 1412-1420.

[11]

Chentir I, Doumandji A, Ammar J, Zili F, Jridi M, Markou G, Ouada HB. Induced change in Arthrospira sp. (Spirulina) intracellular and extracellular metabolites using multifactor stress combination approach. J Appl Phycol, 2018, 30: 1563-1574.

[12]

Decho AW, Gutierrez T. Microbial extracellular polymeric substances (EPSs) in ocean systems. Front Microbiol, 2017, 8: 1-28.

[13]

Dejsungkranont M, Chisti Y, Sirisansaneeyakul S. Simultaneous production of C-phycocyanin and extracellular polymeric substances by photoautotrophic cultures of Arthrospira platensis. J Chem Technol Biotechnol, 2017, 92: 2709-2718.

[14]

Delattre C, Pierre G, Laroche C, Michaud P. Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol Adv, 2016, 34: 1159-1179.

[15]

Depraetere O, Deschoenmaeker F, Badri H, Monsieurs P, Foubert I, Leys N, Wattiez R, Muylaert K. Trade-off between growth and carbohydrate accumulation in nutrient-limited Arthrospira sp. PCC 8005 studied by integrating transcriptomic and proteomic approaches. PLoS ONE, 2015, 10: e0132461.

[16]

Du Z, Li Y, Wanga X, Wana Y, Chen Q, Wang C, Lin X, Liu Y, Chen P, Ruan R. Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresour Technol, 2012, 102: 4890-4896.

[17]

Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem, 1956, 28: 350-356.

[18]

George EA. Culture centre of algae and protozoa: list of strains 1976, 1976, 3, Cambridge: Institute of Terrestrial Ecololy, Natural Environment Research Council.

[19]

Gong H, Tang Y, Wang J, Wen X, Zhang L, Lu C. Characterization of photosystem II in salt-stressed cyanobacterial Spirulina platensis cells. Biochim Biophys Acta, 2008, 1777: 488-495.

[20]

Goo BG, Baeka G, Choi DJ, Park YI, Synytsyac A, Bleha R, Seong DH, Lee CG, Park JK. Characterization of a renewable extracellular polysaccharide from defatted microalgae Dunaliella tertiolecta. Bioresour Technol, 2013, 129: 343-350.

[21]

Han P, Suna Y, Jiaa S, Zhonga C, Tan Z. Effects of light wavelengths on extracellular and capsular polysaccharide production by Nostoc flagelliforme. Carbohydr Polym, 2014, 105: 145-151.

[22]

Hussein MH, Abou-elwafa GS, Shaaban-dessuuki SA, Hassan NI. Characterization and antioxidant activity of exopolysaccharide secreted by Nostoc carneum. Int J Pharmacol, 2015, 11: 432-439.

[23]

Li H, Mao W, Hou Y, Gao Y, Qi X, Zhao C, Chen Y, Chen Y, Li N, Wang C. Preparation, structure and anticoagulant activity of a low molecular weight fraction produced by mild acid hydrolysis of sulfated rhamnan from Monostrom alatissimum. Bioresour Technol, 2012, 114: 414-418.

[24]

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem, 1951, 193: 265-275.

[25]

Lupi FM, Fernandes HML, Tomé MM, Sá-Correia I, Novais JM. Influence of nitrogen source and photoperiod on exopolysaccharide synthesis by the microalga Botryococcus braunii UC 58. Enzym Microb Technol, 1994, 16: 546-550.

[26]

Manirafasha E, Murwanashyaka T, Ndikubwimana T, Ahmed RN, Liu J, Lu Y, Zeng X, Ling X, Jing K. Enhancement of cell growth and phycocyanin production in Arthrospira (Spirulina) platensis by metabolic stress and nitrate fed-batch. Bioresour Technol, 2018, 255: 293-301.

[27]

Markou G, Angelidaki I, Georgakakis D. Microalgae carbohydrates: an overview of the factors influencing carbohydrates production and of main bioconversion technologies for production of biofuels. Appl Microbiol Biotechnol, 2012, 96: 631-645.

[28]

Miklestad SM. Release of extracellular products by phytoplankton with special emphasis on polysaccharides. Sci Total Environ, 1995, 165: 155-164.

[29]

Mishra A, Jha B. Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliella salina under salt stress. Bioresour Technol, 2009, 100: 3382-3386.

[30]

Mishra A, Kavita K, Jha B. Characterization of extracellular polymeric substances produced by micro-algae Dunaliella salina. Carbohydr Polym, 2011, 83: 852-857.

[31]

Mouhim FR, Cornet J, Fontane T, Fournet B, Dubertret G. Production, isolation and preliminary characterization of the exopolysaccharide of the cyanobacterium Spirulina platensis. Biotechnol Lett, 1993, 15: 567-572.

[32]

Mundt S, Kreitlow S, Nowotny A, Effmert U. Biochemical and pharmacological investigations of selected cyanobacteria. Int J Hyg Environ Health, 2001, 203: 327-334.

[33]

Nouha K, Kumar RS, Balasubramanian S, Tyagi RD. Critical review of EPS production, synthesis and composition for sludge flocculation. J Environ Sci, 2018, 66: 225-245.

[34]

Ohki K, Le N, Yoshikawa S, Kanesaki Y, Okajima M, Kaneko T, Thi T. Exopolysaccharide production by a unicellular freshwater cyanobacterium Cyanothece sp. isolated from a rice field in Vietnam. J Appl Phycol, 2014, 26: 265-272.

[35]

Oliver JWK, Atsumi S. Metabolic design for cyanobacterial chemical synthesis. Photosynth Res, 2014, 120: 249-261.

[36]

Otero A, Vincenzini M. Extracellular polysaccharide synthesis by Nostoc strains as affected by N source and light intensity. J Biotechnol, 2003, 102: 143-152.

[37]

Ozturk S, Aslim B. Modification of exopolysaccharide composition and production by three cyanobacterial isolates under salt stress. Environ Sci Pollut Res, 2010, 17: 595-602.

[38]

Parikh A, Madamwar D. Partial characterization of extracellular polysaccharides from cyanobacteria. Bioresour Technol, 2006, 97: 1822-1827.

[39]

Pereira S, Zille A, Micheletti E, Moradas-Ferraira P, De Philippis R, Tamagnini P. Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev, 2009, 33: 917-941.

[40]

Piedras FR, Baisch PRM, Machado MICS, Vieira AAH, Giroldo D. Carbohydrate release by a subtropical strain of Spondylosium pygmaeum (Zygnematophyceae): influence of nitrate availability and culture aging. J Phicol, 2010, 46: 477-483.

[41]

Pignolet O, Jubeau S, Vacca Garcia C, Michaud P. Highly valuable microalgae: biochemical and topological aspects. J Ind Microbiol Biotechnol, 2013, 40: 781-796.

[42]

Reichert M, Bergmann SM, Hwang J, Buchholz R, Lindenberger C. Antiviral activity of exopolysaccharides from Arthrospira platensis against koi herpesvirus. J Fish Dis, 2017

[43]

Santos RR, Corrêa PS, Dantas FML, Teixeira CMLL. Evaluation of the co-production of total carotenoids, C-phycocyanin and polyhydroxyalkanoates by Arthrospira platensis. Bioresour Technol Rep, 2019, 7: 100226.

[44]

Shabana EF, Gabr MA, Moussa HR, El-Shaer EA, Ismaiel MMS. Biochemical composition and antioxidant activities of Arthrospira (Spirulina) platensis in response to gamma irradiation. Food Chem, 2017, 214: 550-555.

[45]

Su C, Chi Z, Lu W. Optimization of medium and cultivation conditions for enhanced exopolysaccharide yield by marine Cyanothece. Chin J Oceanol Limnol, 2007, 25: 411-417.

[46]

Trabelsi L, M’sakni NH, Ouada HB, Roudesli S. Partial characterization of extracellular polysaccharides produced by cyanobacterium Arthrospira platensis. Biotechnol Biopr Eng, 2009, 14: 27-31.

[47]

Trabelsi L, Ouada HB, Bacha H. Combined effect of temperature and light intensity on growth and extracellular polymeric substance production by the cyanobacterium Arthrospira platensis. J Appl Phycol, 2009, 21: 405-412.

[48]

Trabelsi L, Chaieb O, Mnari A, Abid-Essafi S, Aleya L. Partial characterization and antioxidant and antiproliferative activities of the aqueous extracellular polysaccharides from the thermophilic microalgae Graesiellas p. BMC Complement Altern Med, 2016, 16: 2-10.

[49]

Villay A, Laroche C, Roriz C, El Alaoui H, Delbac F, Michaud P. Optimisation of culture parameters for exopolysaccharides production by the microalga Rhodella violacea. Bioresour Technol, 2013, 146: 732-735.

[50]

Wingender J, Neu RT, Flemming HC. Microbial extracellular polymeric substances, 1999, Berlin: Springer-Verlag, 1-19.

[51]

Xiao R, Yang X, Lic M, Lia X, Weib Y, Caod M, Ragauskasc A, Thiesg M, Dingg J, Zhenga Y. Investigation of composition, structure and bioactivity of extracellular polymeric substances from original and stress-induced strains of Thraustochytrium striatum. Carbohydr Polym, 2018, 195: 515.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/