Cellulose–water system’s state analysis by proton nuclear magnetic resonance and sorption measurements

Yuriy B. Grunin , Leonid Yu. Grunin , Veronika Yu. Schiraya , Maria S. Ivanova , Daria S. Masas

Bioresources and Bioprocessing ›› 2020, Vol. 7 ›› Issue (1) : 41

PDF
Bioresources and Bioprocessing ›› 2020, Vol. 7 ›› Issue (1) : 41 DOI: 10.1186/s40643-020-00332-8
Research

Cellulose–water system’s state analysis by proton nuclear magnetic resonance and sorption measurements

Author information +
History +
PDF

Abstract

Most cellulose-based materials’ manufacturing processes include processing this biopolymer in an aqueous medium. Sorption properties depend on cellulose supramolecular structure and nature of its change during moistening. Plenty of researchers’ efforts have been directed to the development of scientifically sound and commercially reliable processes over the past decade for the cellulose fibers’ dispersion in an aqueous medium. Therefore, it needs a more detailed study of the cellulose–water system components’ interaction. This study presents the supramolecular structure and sorption properties of native cotton cellulose research results obtained by 1H NMR relaxation, spectroscopy and sorption measurements. Hydrophilic properties of cellulose as an adsorbent are characterized, taking into account a porous system between its structural elements. We examine in detail water adsorption on the active surface of cellulose Iβ. We also demonstrate the approach for determining the entropy change in the first two layers of adsorbed water and estimate this value increased during adsorption. Cellulose moistening is accompanied by the decomposition of macrofibrils into microfibrils and is manifested in a crystallinity decrease and a specific surface area growth.

Keywords

Cellulose / Nuclear magnetic resonance / Adsorption / Supramolecular structure / Crystallinity

Cite this article

Download citation ▾
Yuriy B. Grunin, Leonid Yu. Grunin, Veronika Yu. Schiraya, Maria S. Ivanova, Daria S. Masas. Cellulose–water system’s state analysis by proton nuclear magnetic resonance and sorption measurements. Bioresources and Bioprocessing, 2020, 7(1): 41 DOI:10.1186/s40643-020-00332-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abragam A. The principles of nuclear magnetism, 1961, Oxford: Clarendon Press.

[2]

Adamson AW, Gast AP. Physical chemistry of surfaces, 1997, Canada: A Wiley-Interscience Publication.

[3]

Atalla RH, Vanderhart DL. Native celluloses: a composite of two distinct crystalline forms. Science, 1984, 223: 283-285.

[4]

Baker AA, Helbert W, Sugiyama J, Miles MJ. New insight into cellulose structure by atomic force microscopy shows the Iα crystal phase at near-atomic resolution. Biophys J, 2000, 79: 1139-1145.

[5]

Banas K, Blicharska B, Dietrich W, Kluza M. Molecular dynamics of cellulose–water systems investigated by NMR relaxation method. Holzforschung, 2000, 54: 501-504.

[6]

Bergenstråhle M, Wohlert J, Larsson PT, Mazeau K, Berglund LA. Dynamics of cellulose–water interfaces: NMR spin-lattice relaxation times calculated from atomistic computer simulations. J Phys Chem B, 2008, 112: 2590-2595.

[7]

Bikales NM and Segal L (eds) (1971) Cellulose and cellulose derivatives. Wiley-Interscience, New York

[8]

Brown RM. Cellulose structure and biosynthesis: what is in store for the 21st century?. J. Polymer Sci. Part A, 2004, 42: 487-495.

[9]

Carpita NC. Update on mechanisms of plant cell wall biosynthesis: how plants make cellulose and other (1 → 4)-β-D-glycans. Plant Physiol, 2011, 155: 171-184.

[10]

Ceylan Ö, Van Landuyt L, Meulewaeter F, De Clerck K. Moisture sorption in developing cotton fibers. Cellulose, 2012, 19: 1517-1526.

[11]

Chanzy H. Kennedy JF, Phillips GO, Williams PA. Aspects of cellulose structure. Cellulose Sources and Exploitation: industrial utilization biotechnology and physico-chemical properties, 1990, New York: Ellis Horwood.

[12]

Chen M, Coasne B, Guyer R, Derome D, Carmeliet J. Role of hydrogen bonding in hysteresis observed in sorption-induced swelling of soft nanoporous polymers. Nat Commun, 2018, 9: 3507-3513.

[13]

Delmer DP, Amor Y. Cellulose biosynthesis. Plant Cell, 1995, 7: 987-1000.

[14]

Doblin MS, Kurek I, Jacob-Wilk D, Delmer DP. Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol, 2002, 43: 1407-1420.

[15]

Dubinin MM, Kadlec O. Novel ideas in the theory of the physical adsorption of vapors on micropore adsorbents. Carbon, 1987, 25: 321-324.

[16]

Fray-Wissling A. The ultrastructure and biogenesis of native cellulose. Fortschr Chem Org Naturst, 1963, 27: 1-30.

[17]

Freeman R. Magnetic resonance in chemistry and medicine, 2003, USA: Oxford University Press.

[18]

French AD. Glucose, not cellobiose, is the repeating unit of cellulose and why that is important. Cellulose, 2017, 24: 4605-4609.

[19]

French AD, Concha M, Dowd MK, Stevens ED. Electron (charge) density studies of cellulose models. Cellulose, 2014, 21: 1051-1063.

[20]

Gregg SJ, Sing KSW. Adsorption, Surface Area and Porosity, 1982, London: ACADEMIC PRESS.

[21]

Grunin YuB, Grunin LYu, Nikol’skaya EA. Pulsed NMR method for determining the thermodynamic characteristics of adsorption processes in biopolymers. Russ J Phys Chem A, 2007, 81: 1165-1169.

[22]

Grunin YuB, Grunin LYu, Nikol’skaya EA, Talantsev VI. Microstructure of cellulose: NMR relaxation study. Polymer Science Ser A, 2012, 54: 201-208.

[23]

Grunin YuB, Grunin LYu, Nikol’skaya EA, Talantsev VI, Gogelashvili GSh. Features of the sorption of water vapor and nitrogen on cellulose. Russ J Phys Chem A, 2013, 87: 100-103.

[24]

Grunin LYu, Grunin YuB, Talantsev VI, Nikolskaya EA, Masas DS. Features of the structural organization and sorption properties of cellulose. Polymer Science Ser A, 2015, 57: 43-51.

[25]

Grunin YuB, Grunin LYu, Talantcev VI, Nikolskaya EA, Masas DS. Supramolecular reorganizations in cellulose during hydration. Biophysics, 2015, 60: 43-52.

[26]

Grunin YuB, Grunin LYu, Masas DS, Talantsev VI, Sheveleva NN. Proton magnetic relaxation study of the thermodynamic characteristics of water adsorbed by cellulose fibers. Russ J Phys Chem A, 2016, 90: 2249-2253.

[27]

Grunin LY, Grunin YB, Nikolskaya EA, Sheveleva NN, Nikolaev IA. An NMR relaxation and spin diffusion study of cellulose structure during water adsorption. Biophysics, 2017, 62: 198-206.

[28]

Grunin YuB, Grunin LYu, Gal’braikh LS, Sheveleva NN, Masas DS. Dispersion peculiarities of crystalline cellulose upon its moistening. Fibre Chem, 2018, 49: 321-326.

[29]

Grunin YuB, Ivanova MS, Masas DS, Grunin LYu. Thermodynamics of adsorption in a cellulose-water system. Russ J Phys Chem A, 2020, 94: 704-708.

[30]

Guo X, Wu Y, Xie X. Water vapor sorption properties of cellulose nanocrystals and nanofibers using dynamic vapor sorption apparatus. Sci Rep, 2017, 7: 14207.

[31]

Hess K, Gütter E, Mahl H. Die Ultratextur bei Fortisan. Elektronenmikroskopische Darstellung grosser Längsperioden in Zellulosefasern. Kolloid-Zeitschrift, 1958, 158: 115-119.

[32]

Hill CAS, Norton A, Newman G. The water vapor sorption behavior of natural fibers. J Appl Polym Sci, 2009, 112: 1524-1537.

[33]

Kirui A, Ling Z, Kang X, Dickwella Widanage MC, Mentink-Vigier F, French AD, Wang T. Atomic resolution of cotton cellulose structure enabled by dynamic nuclear polarization solid-state NMR. Cellulose, 2019, 26: 329-339.

[34]

Kono H, Numata Y. Structural investigation of cellulose Iα and Iβ by 2D RFDR NMR spectroscopy: determination of sequence of magnetically inequivalent d-glucose units along cellulose chain. Cellulose, 2006, 13: 317-326.

[35]

Leisen J, Beckham HW, Benham M. Sorption isotherm measurements by NMR. Solid State Nucl Magn Reson, 2002, 22: 409-422.

[36]

Li Q, Renneckar S. Supramolecular structure characterization of molecularly thin cellulose I nanoparticles. Biomacromol, 2011, 12: 650-659.

[37]

Lindh EL, Terenzi C, Salmen L, Furo I. Water in cellulose: evidence and identification of immobile and mobile adsorbed phases by 2H MAS NMR. Phys Chem Chem Phys, 2017, 19: 4360-4369.

[38]

Lindman B, Karlström G, Stigsson L. On the mechanism of dissolution of cellulose. J Mol Liq, 2010, 156: 76-81.

[39]

Lindman B, Medronho B, Alves L, Costa C, Edlund H, Norgren M. The relevance of structural features of cellulose and its interactions to dissolution, regeneration, gelation and plasticization phenomena. Phys Chem Chem Phys, 2017, 19: 23704-23718.

[40]

Manley R. Fine structure of native cellulose microfibrils. Nature, 1964, 204: 1155-1157.

[41]

Mihranyan A, Llagostera AP, Karmhag R, Strømme M, Ek R. Moisture sorption by cellulose powders of varying crystallinity. Int J Pharm, 2004, 269: 433-442.

[42]

Mitchell J, Gladden LF, Chandrasekera TC, Fordham EJ. Low-field permanent magnets for industrial process and quality control. Prog Nucl Magn Reson Spectrosc, 2014, 76: 1-60.

[43]

Mühlethaler R. Fine structure of natural polysaccharide systems. J Polymer Sci Part C., 1969, 28: 305-316.

[44]

Nelson ML, O’Connor RT. Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part I. Spectra of types I, II, III and of amorphous cellulose. J Appl Polym Sci, 1964, 8: 1311-1324.

[45]

Newman RH, Davidson TC. Molecular conformations at the cellulose–water interface. Cellulose, 2004, 11: 23-32.

[46]

Nishiyama Y. Structure and properties of the cellulose microfibril. J. Wood Sci., 2009, 55: 241-249.

[47]

Nishiyama Y, Langan P, Chanzy H. Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc, 2002, 124: 9074-9082.

[48]

Nishiyama Y, Sugiyama J, Chanzy H, Langan P. Crystal structure and hydrogen-bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc, 2003, 125: 14300-14306.

[49]

Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P. Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Iβ. Biomacromol, 2008, 9: 3133-3140.

[50]

Ono H, Inamoto M, Okajima K, Yaginuma Y. Spin-lattice relaxation behavior of water in cellulose materials in relation to the tablet forming ability of microcrystalline cellulose particles. Cellulose, 1997, 4: 57-73.

[51]

Poletto M, Pistor V, Zattera AJ (2013) Structural Characteristics and Thermal Properties of Native Cellulose. In: Cellulose–Fundamental Aspects (Theo van de Ven and Louis Godbout, eds), IntechOpen

[52]

Rowland SP. Water in polymers. ACS Symposium Series, 1980, Washington: American Chemical Societ.

[53]

Segal L, Creely JJ, Martin AE, Conrad CM. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J, 1959, 29: 786-794.

[54]

Shcherbakova TP, Kotel’nikova NE, Bykhovtseva YuV. Comparative study of powdered and microcrystalline cellulose samples of a various natural origins: physical and chemical characteristics. Russ J of Bioorg Chem, 2012, 38: 689-696.

[55]

Taylor RE, French AD, Gamble GR, Himmelsbach DS, Stipanovic RD, Thibodeaux DP, Wakelyn PJ, Dybowski C. 1H and 13C solid-state NMR of Gossypium barbadense (Pima) cotton. J Mol Struct, 2008, 878: 177-184.

[56]

Tönnesen BA, Ellefsen O. Chain folding—a possibility to be considered in connection with the cellulose molecule?. Norsk Skogind., 1960, 14: 266-269.

[57]

Verlhac C, Dedier J, Chanzy H. Availability of surface hydroxyl groups in valonia and bacterial cellulose. J Polymer Sci Part A, 1990, 28: 1171-1177.

[58]

Viëtor RJ, Newman RH, Ha MA, Apperley DC, Jarvis MC. Conformational features of crystal-surface cellulose from higher plants. Plant J., 2002, 30: 721-731.

[59]

Wang T, Yang H, Kubicki JD, Hong M. Cellulose structural polymorphism in plant primary cell walls investigated by high-field 2D solid-state NMR spectroscopy and density functional theory calculations. Biomacromol, 2016, 17: 2210-2222.

[60]

Xie Y, Hill CAS, Jalaludin Z, Sun D. The water vapour sorption behaviour of three celluloses: analysis using parallel exponential kinetics and interpretation using the Kelvin-Voigt viscoelastic model. Cellulose, 2011, 18: 517-530.

[61]

Xie Y, Hill CAS, Jalaludin Z, Curling SF, Anandjiwala RD, Norton A, Newman G. The dynamic water vapour sorption behaviour of natural fibres and kinetic analysis using the parallel exponential kinetics model. J Mater Sci, 2011, 46: 479-489.

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/