Anaerobic co-digestion of rabbit manure and sorghum crops in a bench-scale biodigester

María Esperanza Adrover , Ivana Cotabarren , Ezequiel Madies , Manuel Rayes , Sabrina Belén Rodriguez Reartes , Marisa Pedernera

Bioresources and Bioprocessing ›› 2020, Vol. 7 ›› Issue (1) : 42

PDF
Bioresources and Bioprocessing ›› 2020, Vol. 7 ›› Issue (1) : 42 DOI: 10.1186/s40643-020-00327-5
Research

Anaerobic co-digestion of rabbit manure and sorghum crops in a bench-scale biodigester

Author information +
History +
PDF

Abstract

Any type of biomass can be used as substrate for biogas production, but the performance of the biodigestion depends on the composition of the feed, and no direct extrapolation of the yield of the process from one substrate to another can be made. In this work, the performance of a bench-scale anaerobic biodigester of 93 L installed at ambient conditions is studied. The biodigester was set up in a region where temperature varies significantly during the year, and was operated under semi-batch conditions with non-thermal control for 16 months with a feed of rabbit manure and ground sorghum grains. To our knowledge, this is the first time the co-digestion of rabbit manure with sorghum grains is considered. To evaluate the biodigestion performance, critical operational variables (pH, temperature, biogas flowrate) were monitored, and composition of substrate, digestate and produced biogas was determined. Moreover, the following variables were quantified: (a) the theoretical methane potential, (b) the specific methane yield and (c) the degree of degradation of the substrate. A 1-D non-stationary model was formulated and validated with experimental data in order to analyze, in a theoretical form, the impact of incorporating thermal insulation to the unit. The results show that is it possible to produce biogas in a bench-scale biodigester, with a novel feed of rabbit manure and ground sorghum grains, in a region with significant temperature changes along the year. Moreover, it is shown that the 1-D model constitutes a useful tool for the design or improvement of biodigesters regarding the insulation system and the warming policies.

Keywords

Anaerobic digestion / Rabbit manure / Sorghum crops / Heat transfer model / Theoretical methane potential / Specific methane yield

Cite this article

Download citation ▾
María Esperanza Adrover, Ivana Cotabarren, Ezequiel Madies, Manuel Rayes, Sabrina Belén Rodriguez Reartes, Marisa Pedernera. Anaerobic co-digestion of rabbit manure and sorghum crops in a bench-scale biodigester. Bioresources and Bioprocessing, 2020, 7(1): 42 DOI:10.1186/s40643-020-00327-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aubart C, Bully F. Anaerobic digestion of rabbit wastes and pig manure mixed with rabbit wastes in various experimental conditions. Agricultural Wastes, 1984, 10: 1-13.

[2]

Axaopoulos P, Panagakis P, Tsavdaris A, Georgakakis D. Simulation and experimental performance of a solar-heated anaerobic digester. Sol Energy, 2001, 70: 155-164.

[3]

Bergman TL, Lavigne AS, Incropera FP, Dewitt DP. Fundamentals of heat and mass transfer, 2011, New Jersey: Wiley.

[4]

Borole AP, Klasson KT, Ridenour W, . Methane production in a 100-L upflow bioreactor by anaerobic digestion of farm waste. Appl Biochem Biotechnol, 2006, 129–132: 887-896.

[5]

Buswell AM, Mueller HF. Mechanism of methane fermentation. Ind Eng Chem, 1952, 44: 550-552.

[6]

Chae KJ, Jang A, Yim SK, Kim IS. The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Biores Technol, 2008, 99: 1-6.

[7]

Curry N, Pillay P. Integrating solar energy into an urban small-scale anaerobic digester for improved performance. Renewable Energy, 2015, 83: 280-293.

[8]

Deublein D, Steinhauser A. Biogas from waste and renewable resources. An introduction, 2008, Weinheim: Wiley-VCH Verlag GmbH & Co, KGaA

[9]

Di Maggio J, Diaz Ricci JC, Soledad Diaz M. Parameter estimation in kinetic models for large scale metabolic networks with advanced mathematical programming techniques. Comp Aided Chem Eng, 2010, 28: 355-360.

[10]

EPA (1996) Method 3050B. Acid digestion of sediments, sludges, and soils. pp. 1–12

[11]

Gebremedhin KG, Wu B, Gooch C, . Heat transfer model for plug-flow anaerobic digesters. Trans ASAE, 2005, 48: 777-785.

[12]

Gerardi MH. The microbiology of anaerobic digesters, 2003, New Jersey: Wiley

[13]

Groppelli E, Giampaoli O. El camino de la biodigestión, 2001, 1, Santa Fe: UNL.

[14]

Group D (2006) The Facts on File Chemistry Handbook. Infobase Publishing: New York

[15]

Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P. The future of anaerobic digestion and biogas utilization. Biores Technol, 2009, 100: 5478-5484.

[16]

Hreiz R, Adouani N, Jannot Y, Pons MN. Modeling and simulation of heat transfer phenomena in a semi-buried anaerobic digester. Chem Eng Res Des, 2017, 119: 101-116.

[17]

Huerga I, Butti M, Venturelli L (2014) Biodigestores de Pequeña Escala Un análisis práctico sobre su factibilidad, Primera Ed. Estación Experimental Agropecuaria INTA Oliveros

[18]

Ierapetritou MG, Muzzio FJ, Reklaitis GV. Perspectives on the continuous pharmaceutical processes. AIChE J, 2016

[19]

Karim K, Klasson KT, Hoffmann R, . Anaerobic digestion of animal waste: Effect of mixing. Biores Technol, 2005, 96: 1607-1612.

[20]

Kishore VVN. A heat-transfer analysis of fixed-dome biogas plants. Biol Wastes, 1989, 30: 199-215.

[21]

Koch K. Calculating the degree of degradation of the volatile solids in continuously operated bioreactors. Biomass Bioenerg, 2015, 74: 79-83.

[22]

Li Y, Zhang R, Liu G, . Comparison of methane production potential, biodegradability, and kinetics of different organic substrates. Biores Technol, 2013, 149: 565-569.

[23]

Li Y, Zhang R, Liu X, . Evaluating methane production from anaerobic mono- and co-digestion of kitchen waste, corn stover, and chicken manure. Energy Fuels, 2013, 27: 2085-2091.

[24]

Li K, Liu R, Sun C. Bioresource Technology Comparison of anaerobic digestion characteristics and kinetics of four livestock manures with different substrate concentrations. Biores Technol, 2015, 198: 133-140.

[25]

Mahadevaswamy M, Venkataraman LV. Integrated utilization of rabbit droppings for biogas and fish production. Biol Wastes, 1988, 25: 249-256.

[26]

Mata-Alvarez J, Dosta J, Romero-Güiza MS, . A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew Sustain Energy Rev, 2014, 36: 412-427.

[27]

Mekki A, Arous F, Aloui F, Sayadi S. Disposal of agro-industrials wastes as soil amendments. Am J Environ Sci, 2013, 9: 458-469.

[28]

Merlin G, Kohler F, Bouvier M, . Importance of heat transfer in an anaerobic digestion plant in a continental climate context. Biores Technol, 2012, 124: 59-67.

[29]

Mudhoo A. Biogas production, 2012, New Jersey: Wiley

[30]

Perrigault T (2010) Mejoramiento del comportamiento térmico de un biodigestor low-cost tipo plug-flow. Universitat Politècnica de Catalunya. https://hdl.handle.net/2099.1/9229

[31]

Perrigault T, Weatherford V, Martí-Herrero J, Poggio D. Towards thermal design optimization of tubular digesters in cold climates: a heat transfer model. Biores Technol, 2012, 124: 259-268.

[32]

Process System Enterprise. gPROMS, (2019). http//www.psenterprise.com. Accessed Jan 9, 2019

[33]

Rehrl J, Gruber A, Khinast JG, Horn M. Sensitivity analysis of a pharmaceutical tablet production process from the control engineering perspective. Int J Pharm, 2017, 517: 373-382.

[34]

Scheel K. Colorimetric determination of phosphoric acid in fertilizers with the pulfrich photometer. Z Analytische Chemie, 1934, 105: 256-269.

[35]

Schnurer A, Bohn I, Moestedt J (2016) Protocol for start-up and operation of cstr biogas processes hydrocarbon and lipid microbiology protocols—springer protocols handbooks. pp. 1–29

[36]

Servicio Meteorológico Nacional. (2016). Ministerio de Defensa, Argentina. https://www.smn.gob.ar/

[37]

Smith KA, Metcalfe P, Grylls J, et al (2007) Nutrient value of digestate from farm-based biogas plants in Scotland. Report for Scottish Executive Environment and Rural Affairs Department - ADA/009/06

[38]

Surendra KC, Takara D, Jasinski J, Khanal SK. Household anaerobic digester for bioenergy production in developing countries: opportunities and challenges. Environ Technol, 2013, 34: 1671-1689.

[39]

Trujillo D, Pérez JF, Cebreros FJ. Anaerobic digestion of rabbit wastes. Biores Technol, 1991, 35: 95-98.

[40]

Trujillo D, Pérez JF, Cebreros FJ. Energy recovery from wastes. Anaerobic digestion of tomato plant mixed with rabbit wastes. Biores Technol, 1993, 45: 81-83.

[41]

Valle-Guadarrama S, Espinosa-Solares T, López-Cruz IL, Domaschko M. Modeling temperature variations in a pilot plant thermophilic anaerobic digester. Bioprocess Biosyst Eng, 2011, 34: 459-470.

[42]

Vaneeckhaute C, Meers E, Michels E, . Closing the nutrient cycle by using bio-digestion waste derivatives as synthetic fertilizer substitutes: a field experiment. Biomass Bioenerg, 2013, 55: 175-189.

[43]

Vaneeckhaute C, Meers E, Michels E, . Ecological and economic benefits of the application of bio-based mineral fertilizers in modern agriculture. Biomass Bioenerg, 2013, 49: 239-248.

[44]

Weatherford VC, Zhai ZJ. Affordable solar-assisted biogas digesters for cold climates: experiment, model, verification and analysis. Appl Energy, 2015, 146: 209-216.

[45]

Weiland P. Biogas production: current state and perspectives. Appl Microbiol Biotechnol, 2010, 85: 849-860.

[46]

Wellinger A, Murphy J, Baxter D. The biogas handbook: science, production and applications, 2013, 1, Elsevier Science: Woodhead Publishing Series in Energy.

[47]

Zirkler D, Peters A, Kaupenjohann M. Elemental composition of biogas residues: variability and alteration during anaerobic digestion. Biomass Bioenerg, 2014, 67: 89-98.

Funding

Universidad Nacional del Sur(CSU 254/17)

Secretaría de Políticas Universitarias(3546)

Agencia Nacional de Promoción Científica y Tecnológica(PICT-2015-3793)

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/