Bioethanol from hydrolyzed Spirulina (Arthrospira platensis) biomass using ethanologenic bacteria

Eliana B. Werlang , Jennifer Julich , Maria V. G. Muller , Fabio de Farias Neves , Estefanía Sierra-Ibarra , Alfredo Martinez , Rosana de C. de S. Schneider

Bioresources and Bioprocessing ›› 2020, Vol. 7 ›› Issue (1) : 27

PDF
Bioresources and Bioprocessing ›› 2020, Vol. 7 ›› Issue (1) : 27 DOI: 10.1186/s40643-020-00315-9
Research

Bioethanol from hydrolyzed Spirulina (Arthrospira platensis) biomass using ethanologenic bacteria

Author information +
History +
PDF

Abstract

Photosynthetic microorganisms are considered excellent feedstock for biofuel production in developing biomass production technologies. A study was conducted to evaluate ethanol production with the sequential enzymatic saccharification and fermentation of Arthrospira platensis (Spirulina) biomass with the metabolically engineered Escherichia coli strain MS04. A. platensis was cultivated semicontinuously in an open raceway pond, and the carbohydrate content was determined to be as high as 40%. The enzymatic saccharification was designed to release the maximum amount of glucose. After 40 h of enzymatic saccharification, 27 g L−1 of monosaccharides was obtained. These slurries were fermented with ethanologenic bacteria, achieving 12.7 g L−1 ethanol after 9 h of fermentation, which corresponds to 92% conversion yield of the glucose content in the hydrolysate, 0.13 g of ethanol per 1 g of Spirulina biomass and a volumetric productivity of 1.4 g of ethanol L−1 h−1. Therefore, we conclude that it is possible, in a short time, to obtain a high ethanol yield corresponding to 160 L per ton of dry biomass with a high productivity.

Keywords

A. platensis / Enzymatic saccharification / Escherichia coli / Bioethanol / Biomass

Cite this article

Download citation ▾
Eliana B. Werlang, Jennifer Julich, Maria V. G. Muller, Fabio de Farias Neves, Estefanía Sierra-Ibarra, Alfredo Martinez, Rosana de C. de S. Schneider. Bioethanol from hydrolyzed Spirulina (Arthrospira platensis) biomass using ethanologenic bacteria. Bioresources and Bioprocessing, 2020, 7(1): 27 DOI:10.1186/s40643-020-00315-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abomohra AE-F, Jin W, Tu R, Han S-F, Eid M, Eladel H. Microalgal biomass production as a sustainable feedstock for biodiesel: current status and perspectives. Renew Sustain Energy Rev, 2016, 64: 596-606.

[2]

Aikawa S, Inokuma K, Wakai S, Sasaki K, Ogino C, Chang J-S, Hasunuma T, Kondo A. Direct and highly productive conversion of cyanobacteria Arthrospira platensis to ethanol with CaCl2 addition. Biotechnol Biofuels, 2018, 11(1): 50.

[3]

Al Abdallah Q, Nixon BT, Fortwendel JR. The enzymatic conversion of major algal and cyanobacterial carbohydrates to bioethanol. Front Energy Res., 2016, 4: 36.

[4]

Bastos RG (2018) ‘Biofuels from microalgae: bioethanol’ green energy technol. Springer Verlag, pp. 229–246. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042276499&doi=10.1007/978-3-319-69093-3_11&partnerID=40&md5=464a8d90c1314c931de21eefebaf2c2e

[5]

Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Canadian J Biochem Physiol, 1959, 37(8): 911-917.

[6]

Braga VDS, Mastrantonio DJDS, Costa JAV, Morais MGD. Cultivation strategy to stimulate high carbohydrate content in Spirulina biomass. Biores Technol, 2018, 269: 221-226.

[7]

Chowdhury H, Loganathan B. Third-generation biofuels from microalgae: a review. Curr Opin Green Sustainable Chem, 2019, 20: 39-44.

[8]

Dasan YK, Lam MK, Yusup S, Lim JW, Lee KT. Life cycle evaluation of microalgae biofuels production: effect of cultivation system on energy, carbon emission and cost balance analysis. Sci Total Environ, 2019, 688: 112-128.

[9]

De Souza MP, Hoeltz M, Gressler PD, Benitez LB, Schneider RCS. Potential of microalgal bioproducts: general perspectives and main challenges. Waste Biomass Valorization, 2018, 10(8): 2139-2156.

[10]

Depraetere O, Pierre G, Deschoenmaeker F, Badri H, Foubert I, Leys N, Markou G, Wattiez R, Michaud P, Muylaert K. Harvesting carbohydrate-rich Arthrospira platensis by spontaneous settling. Bioresour Technol, 2015, 180: 16-21.

[11]

Dixon C, Wilken LR. Green microalgae biomolecule separations and recovery. Bioresources Bioprocess, 2018

[12]

Efremenko E, Nikolskaya AB, Lyagin I, Senko O, Makhlis TA, Stepanov NA, Maslova O, Mamedova F, Varfolomeev S. Production of biofuels from pretreated microalgae biomass by anaerobic fermentation with immobilized Clostridium acetobutylicum cells. Biores Technol, 2012, 114: 342-348.

[13]

Fernandez-Sandoval MT, Huerta-Beristain G, Trujillo-Martinez B, Bustos P, Gonzalez V, Bolivar F, Gosset G, Martinez A. Laboratory metabolic evolution improves acetate tolerance and growth on acetate of ethanologenic Escherichia coli under non-aerated conditions in glucose-mineral medium. Appl Microbiol Biotechnol, 2012, 96(5): 1291-1300.

[14]

Fernández-Sandoval M, Galindez-Mayer J, Moss-Acosta C, Gosset G, Martinez A. Volumetric oxygen transfer coefficient as a means of improving volumetric ethanol productivity and a criterion for scaling up ethanol production with Escherichia coli: scale-up ethanol production E. coli. J Chem Technol Biotechnol, 2016

[15]

Günerken E, D’Hondt E, Eppink MHM, Garcia-Gonzalez L, Elst K, Wijffels RH. Cell disruption for microalgae biorefineries. Biotechnol Adv, 2015, 33(2): 243-260.

[16]

Gyekye L (2017). Second-generation biofuels ‘more cost-effective’ than first-generation biofuels, new study suggests. https://biofuels-news.com/news/second-generation-biofuels-more-cost-effective-than-first-generation-biofuels-new-study-suggests/. Accessed 2020

[17]

Hamouda RA, Sherif SA, Ghareeb MM. Bioethanol production by various hydrolysis and fermentation processes with micro and macro green algae. Waste Biomass Valor., 2018, 9(9): 1495-1501.

[18]

Karagoz P, Bill RM, Ozkan M. Lignocellulosic ethanol production: evaluation of new approaches, cell immobilization and reactor configurations. Renew Energy, 2019, 143: 741-752.

[19]

Keris-Sen UD, Gurol MD. Using ozone for microalgal cell disruption to improve enzymatic saccharification of cellular carbohydrates. Biomass Bioenerg, 2017, 105: 59-65.

[20]

Lee OK, Lee EY. Sustainable production of bioethanol from renewable brown algae biomass. Biomass Bioenerg, 2016, 92: 70-75.

[21]

Li X, Li W, Zhai J, Wei H. Effect of nitrogen limitation on biochemical composition and photosynthetic performance for fed-batch mixotrophic cultivation of microalga Spirulina platensis. Bioresour Technol, 2018, 263: 555-561.

[22]

Lopes TF, Cabanas C, Silva A, Fonseca D, Santos E, Guerra LT, Sheahan C, Reis A, Gírio F. Process simulation and techno-economic assessment for direct production of advanced bioethanol using a genetically modified Synechocystis sp. Bioresour Technol Rep, 2019, 6: 113-122.

[23]

Lu W, Alam MA, Luo W, Asmatulu E. Integrating Spirulina platensis cultivation and aerobic composting exhaust for carbon mitigation and biomass production. Bioresour Technol, 2019, 271: 59-65.

[24]

Magro FG, Margarites AC, Reinehr CO, Gonçalves GC, Rodigheri G, Costa JAV, Colla LM. Spirulina platensis biomass composition is influenced by the light availability and harvest phase in raceway ponds. Environ Technol, 2018, 39(14): 1868-1877.

[25]

Markou G, Angelidaki I, Nerantzis E, Georgakakis D. Bioethanol production by carbohydrate-enriched biomass of Arthrospira (Spirulina) platensis. Energies, 2013, 6: 3937-3950.

[26]

Martinez A, Grabar TB, Shanmugam KT, Yomano LP, York SW, Ingram LO. Low salt medium for lactate and ethanol production by recombinant Escherichia coli B. Biotech Lett, 2007, 29(3): 397-404.

[27]

Mukhopadhyay A. Tolerance engineering in bacteria for the production of advanced biofuels and chemicals. Trends Microbiol, 2015, 23(8): 498-508.

[28]

Pedraza L, Flores A, Toribio H, Quintero R, Le Borgne S, Moss-Acosta C, Martinez A. Sequential thermochemical hydrolysis of corncobs and enzymatic saccharification of the whole slurry followed by fermentation of solubilized sugars to ethanol with the ethanologenic strain Escherichia coli MS04. BioEnergy Res., 2016, 9(4): 1046-1052.

[29]

Phélippé M, Gonçalves O, Thouand G, Cogne G, Laroche C. Characterization of the polysaccharides chemical diversity of the cyanobacteria Arthrospira platensis. Algal Res, 2019, 38: 101426.

[30]

Phwan CK, Ong HC, Chen W-H, Ling TC, Ng EP, Show PL. Overview: comparison of pretreatment technologies and fermentation processes of bioethanol from microalgae. Energy Convers Manage, 2018, 173: 81-94.

[31]

Phwan CK, Chew KW, Sebayang AH, Ong HC, Ling TC, Malek MA, Ho Y-C, Show PL. Effects of acids pre-treatment on the microbial fermentation process for bioethanol production from microalgae. Biotechnol Biofuels, 2019, 12(1): 191.

[32]

Rajesh Banu J, Preethi Kavitha S, Gunasekaran M, Kumar G. Microalgae based biorefinery promoting circular bioeconomy-techno economic and life-cycle analysis. Biores Technol, 2020, 302: 122822.

[33]

Rempel A, Machado T, Treichel H, Colla E, Margarites AC, Colla LM. Saccharification of Spirulina platensis biomass using free and immobilized amylolytic enzymes. Bioresour Technol, 2018, 263: 163-171.

[34]

Shankar K, Kulkarni NS, Jayalakshmi SK, Sreeramulu K. Saccharification of the pretreated husks of corn, peanut and coffee cherry by the lignocellulolytic enzymes secreted by Sphingobacterium sp. ksn for the production of bioethanol. Biomass Bioenergy, 2019, 127: 105298.

[35]

Shokrkar H, Ebrahimi S, Zamani M. Enzymatic hydrolysis of microalgal cellulose for bioethanol production, modeling and sensitivity analysis. Fuel, 2018, 228: 30-38.

[36]

Silva AdSe, de Magalhães WT, Moreira LM, Rocha MVP, Bastos AKP. Microwave-assisted extraction of polysaccharides from Arthrospira (Spirulina) platensis using the concept of green chemistry. Algal Res, 2018, 35: 178-184.

[37]

Singh N, Puri M, Tuli DK, Gupta RP, Barrow CJ, Mathur AS. Bioethanol production potential of a novel thermophilic isolate Thermoanaerobacter sp. DBT-IOC-X2 isolated from Chumathang hot spring. Biomass Bioenerg, 2018, 116: 122-130.

[38]

Sivaramakrishnan R, Incharoensakdi A. Utilization of microalgae feedstock for concomitant production of bioethanol and biodiesel. Fuel, 2018, 217: 458-466.

[39]

Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, and Templeton D (2005) Determination of ash in biomass. Laboratory analytical procedure, Technical report, pp 1–8

[40]

Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, and Crocker D (2012) Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure, Technical report, pp 1–18

[41]

Souza LD, Simioni C, Bouzon ZL, Schneider RC, Gressler P, Miotto MC, Rossi MJ, Rorig LR. Morphological and ultrastructural characterization of the acidophilic and lipid-producer strain Chlamydomonas acidophila LAFIC-004 (Chlorophyta) under different culture conditions. Protoplasma, 2017, 254(3): 1385-1398.

[42]

Tan IS, Lam MK, Foo HCY, Lim S, Lee KT. Advances of macroalgae biomass for the third generation of bioethanol production. Chin J Chem Eng, 2019

[43]

Tornabene T, Bourne TF, Raziuddin S, Ben-Amotz A. Lipid and lipopolysaccharide constituents of cyanobacterium Spirulina platensis (Cyanophyceae, Nostocales). Mar Eol Progr Ser, 1985, 22: 121-125.

[44]

Vargas-Tah A, Moss-Acosta CL, Trujillo-Martinez B, Tiessen A, Lozoya-Gloria E, Orencio-Trejo M, Gosset G, Martinez A. Non-severe thermochemical hydrolysis of stover from white corn and sequential enzymatic saccharification and fermentation to ethanol. Biores Technol, 2015, 198: 611-618.

[45]

Velazquez-Lucio J, Rodríguez-Jasso RM, Colla LM, Sáenz-Galindo A, Cervantes-Cisneros DE, Aguilar CN, Fernandes BD, Ruiz HA. Microalgal biomass pretreatment for bioethanol production: a review. Biofuel Res J, 2018, 5(1): 780-791.

[46]

Verdasco-Martín CM, Díaz-Lozano A, Otero C. Advantageous enzyme selective extraction process of essential spirulina oil. Catal Today, 2019

[47]

Ye C, Mu D, Horowitz N, Xue Z, Chen J, Xue M, Zhou Y, Klutts M, Zhou W. Life cycle assessment of industrial scale production of spirulina tablets. Algal Res, 2018, 34: 154-163.

[48]

Zhou N, Zhang Y, Wu X, Gong X, Wang Q. Hydrolysis of Chlorella biomass for fermentable sugars in the presence of HCl and MgCl2. Bioresour Technol, 2011, 102: 10158-10161.

Funding

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior(code 001)

Conselho Nacional de Desenvolvimento Científico e Tecnológico(09652/2016-2)

Ministério da Ciência, Tecnologia, Inovações e Comunicações(01.0144.00/2010)

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/