Optimization of immobilized Lactobacillus pentosus cell fermentation for lactic acid production

Jianfei Wang , Jiaqi Huang , Hannah Laffend , Shaoming Jiang , Jing Zhang , Yuchen Ning , Mudannan Fang , Shijie Liu

Bioresources and Bioprocessing ›› 2020, Vol. 7 ›› Issue (1) : 15

PDF
Bioresources and Bioprocessing ›› 2020, Vol. 7 ›› Issue (1) : 15 DOI: 10.1186/s40643-020-00305-x
Research

Optimization of immobilized Lactobacillus pentosus cell fermentation for lactic acid production

Author information +
History +
PDF

Abstract

Parametric optimization is an effective way in fermentation process to improve product yield and productivity in order to save time, space and financial resources. In this study, Box–Behnken design was applied to optimize the conditions for lactic acid production by immobilized Lactobacillus pentosus ATCC 8041 cell fermentation. Two quadratic models and response surface methodology were performed to illustrate the effect of each parameters and their interactions on the lactic acid yield and glucose consumption rate in immobilized L. pentosus ATCC 8041 cell fermentation. The maximum lactic acid yield was obtained as 0.938 ± 0.003 g/g glucose with a productivity of 2.213 ± 0.008 g/(L × h) under the optimized conditions of 2.0 mm bead diameter, 5.60 pH, 115.3 g/L initial glucose concentration, and 398.2 mg biomass (CDW) in 100 mL hydrogel. The analysis of variance indicated that the quadratic model was significant and could be used to scale up the fermentation process.

Keywords

Lactobacillus pentosus / Immobilization / Lactic acid / Optimization

Cite this article

Download citation ▾
Jianfei Wang, Jiaqi Huang, Hannah Laffend, Shaoming Jiang, Jing Zhang, Yuchen Ning, Mudannan Fang, Shijie Liu. Optimization of immobilized Lactobacillus pentosus cell fermentation for lactic acid production. Bioresources and Bioprocessing, 2020, 7(1): 15 DOI:10.1186/s40643-020-00305-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdel-Rahman MA, Tashiro Y, Sonomoto K. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J Biotechnol, 2011, 156(4): 286-301.

[2]

Al-Gheethi A, Noman E, Mohamed RMSR, Ismail N, Abdullah AHB, Kassim AHM. Optimizing of pharmaceutical active compounds biodegradability in secondary effluents by β-lactamase from Bacillus subtilis using central composite design. J Hazard Mater, 2019, 365: 883-894.

[3]

Aslan N, Cebeci Y. Application of Box–Behnken design and response surface methodology for modeling of some Turkish coals. Fuel, 2007, 86(1–2): 90-97.

[4]

Bahry H, Abdalla R, Pons A, Taha S, Vial C. Optimization of lactic acid production using immobilized Lactobacillus rhamnosus and carob pod waste from the Lebanese food industry. J Biotechnol, 2019, 306: 81-88.

[5]

Bhatnagar Y, Singh GB, Mathur A, Srivastava S, Gupta S, Gupta N. Biodegradation of carbazole by Pseudomonas sp. GBS. 5 immobilized in polyvinyl alcohol beads. J Biochem Technol, 2016, 6(3): 1003-1007.

[6]

Bhushan B, Pal A, Jain V. Improved enzyme catalytic characteristics upon glutaraldehyde cross-linking of alginate entrapped xylanase isolated from Aspergillus flavus MTCC 9390. Enzyme Res, 2015

[7]

Buyondo JP, Liu S. Unstructured kinetic modeling of batch production of lactic acid from hemicellulosic sugars. J Bioprocess Eng Biorefin, 2013, 2(1): 40-45.

[8]

Carmelo V, Santos H, SaCorreia I. Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae. Biochim Biophys Acta, 1997, 1325(1): 63-70.

[9]

Chollom MN, Rathilal S, Swalaha FM, Bakare BF, Tetteh EK, Chollom MN, Rathilal S, Swalaha FM, Bakare BF, Tetteh EK. Comparison of response surface methods for the optimization of an upflow anaerobic sludge blanket for the treatment of slaughterhouse wastewater. Environ Eng Res, 2019, 25(1): 114-122.

[10]

Dishisha T, Alvarez MT, Hatti-Kaul R. Batch and continuous propionic acid production from glycerol using free and immobilized cells of Propionibacterium acidipropionici. Bioresour Technol, 2012, 118: 553-5622.

[11]

Djukić-Vuković AP, Mojović LV, Jokić BM, Nikolić SB, Pejin JD. Lactic acid production on liquid distillery stillage by Lactobacillus rhamnosus immobilized onto zeolite. Bioresour Technol, 2013, 135: 454-458.

[12]

Djukić-Vuković AP, Jokić BM, Kocić-Tanackov SD, Pejin JD, Mojović LV. Mg-modified zeolite as a carrier for Lactobacillus rhamnosus in L (+) lactic acid production on distillery wastewater. J Taiwan Inst Chem Eng, 2016, 59: 262-266.

[13]

Dong Y, Zhang Y, Tu B. Immobilization of ammonia-oxidizing bacteria by polyvinyl alcohol and sodium alginate. Braz J Microbiol, 2017, 48(3): 515-521.

[14]

Dwevedi A, Kayastha AM. Optimal immobilization of β-galactosidase from Pea (PsBGAL) onto sephadex and chitosan beads using response surface methodology and its applications. Bioresour Technol, 2009, 100(10): 2667-2675.

[15]

Ghorbani F, Younesi H, Sari AE, Najafpour G. Cane molasses fermentation for continuous ethanol production in an immobilized cells reactor by Saccharomyces cerevisiae. Renew Energy, 2011, 36(2): 503-509.

[16]

Goranov B, Blazheva D, Kostov G, Denkova Z, Germanova Y. Lactic acid fermentation with encapsulated Lactobacillus casei ssp. rhamnosus ATCC 11979 (NBIMCC 1013) in alginate/chitosan matrices. Bulg J Agric Sci, 2013, 19(2): 101-104.

[17]

Gummadi SN, Ganesh K, Santhosh D. Enhanced degradation of caffeine by immobilized cells of Pseudomonas sp. in agar–agar matrix using statistical approach. Biochem Eng J, 2009, 44(2–3): 136-141.

[18]

Guoqiang D, Kaul R, Mattiasson B. Evaluation of alginate-immobilized Lactobacillus casei for lactate production. Appl Microbiol Biotechnol, 1991, 36(3): 309-314.

[19]

Holzgrabe U. Quantitative NMR spectroscopy in pharmaceutical applications. Prog Nucl Magn Reson Spectrosc, 2010, 57(2): 229-240.

[20]

Huang J, Zhang G, Zheng L, Lin Z, Wu Q, Pan Y. Plackett–Burman design and response surface optimization of conditions for culturing Saccharomyces cerevisiae in Agaricus bisporus industrial wastewater. Acta Sci Pol Technol Aliment, 2019

[21]

Idris A, Suzana W. Effect of sodium alginate concentration, bead diameter, initial pH and temperature on lactic acid production from pineapple waste using immobilized Lactobacillus delbrueckii. Process Biochem, 2006, 41(5): 1117-1123.

[22]

Kourkoutas Y, Bekatorou A, Banat IM, Marchant R, Koutinas A. Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol, 2004, 21(4): 377-397.

[23]

Krischke W, Schröder M, Trösch W. Continuous production of l-lactic acid from whey permeate by immobilized Lactobacillus casei subsp. casei. Appl Microbiol Biotechnol, 1991, 34(5): 573-578.

[24]

Kumar MN, Gialleli AI, Masson JB, Kandylis P, Bekatorou A, Koutinas AA, Kanellaki M. Lactic acid fermentation by cells immobilised on various porous cellulosic materials and their alginate/poly-lactic acid composites. Bioresour Technol, 2014, 165: 332-335.

[25]

Laopaiboon P, Thani A, Leelavatcharamas V, Laopaiboon L. Acid hydrolysis of sugarcane bagasse for lactic acid production. Bioresour Technol, 2010, 101(3): 1036-1043.

[26]

Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci, 2012, 37(1): 106-126.

[27]

Lee KH, Choi IS, Kim YG, Yang DJ, Bae HJ. Enhanced production of bioethanol and ultrastructural characteristics of reused Saccharomyces cerevisiae immobilized calcium alginate beads. Bioresour Technol, 2011, 102(17): 8191-8198.

[28]

Liu R, Shen F. Impacts of main factors on bioethanol fermentation from stalk juice of sweet sorghum by immobilized Saccharomyces cerevisiae (CICC 1308). Bioresour Technol, 2008, 99(4): 847-854.

[29]

Liu YP, Zheng P, Sun ZH, Ni Y, Dong JJ, Zhu LL. Economical succinic acid production from cane molasses by Actinobacillus succinogenes. Bioresour Technol, 2008, 99(6): 1736-1742.

[30]

Liu CZ, Wang F, Ou-Yang F. Ethanol fermentation in a magnetically fluidized bed reactor with immobilized Saccharomyces cerevisiae in magnetic particles. Bioresour Technol, 2009, 100(2): 878-882.

[31]

Liu J, Pan D, Wu X, Chen H, Cao H, Li QX, Hua R. Enhanced degradation of prometryn and other s-triazine herbicides in pure cultures and wastewater by polyvinyl alcohol-sodium alginate immobilized Leucobacter sp. JW-1. Sci Total Environ, 2018, 615: 78-86.

[32]

Lu Z, He F, Shi Y, Lu M, Yu L. Fermentative production of L (+)-lactic acid using hydrolyzed acorn starch, persimmon juice and wheat bran hydrolysate as nutrients. Bioresour Technol, 2010, 101(10): 3642-3648.

[33]

Mariam I, Manzoor K, Ali S, Ul-Haq I. Enhanced production of ethanol from free and immobilized Saccharomyces cerevisiae under stationary culture. Pak J Bot, 2009, 41(2): 821-833.

[34]

Martinez FAC, Balciunas EM, Salgado JM, González JMD, Converti A, de Souza Oliveira RP. Lactic acid properties, applications and production: a review. Trends Food Sci Technol, 2013, 30(1): 70-83.

[35]

Maslova O, Sen’ko O, Stepanov N, Efremenko E. Lactic acid production using free cells of bacteria and filamentous fungi and cells immobilized in polyvinyl alcohol cryogel: a comparative analysis of the characteristics of biocatalysts and processes. Catal Ind, 2016, 8(3): 280-285.

[36]

Miaou SP, Lu A, Lum HS. Pitfalls of using R2 to evaluate goodness of fit of accident prediction models. Transp Res Rec, 1996, 1542(1): 6-13.

[37]

Mittal A, Scott GM, Amidon TE, Kiemle DJ, Stipanovic AJ. Quantitative analysis of sugars in wood hydrolyzates with 1H NMR during the autohydrolysis of hardwoods. Bioresour Technol, 2009, 100(24): 6398-6406.

[38]

Mundra P, Desai K, Lele S. Application of response surface methodology to cell immobilization for the production of palatinose. Bioresour Technol, 2007, 98(15): 2892-2896.

[39]

Okano K, Zhang Q, Yoshida S, Tanaka T, Ogino C, Fukuda H, Kondo A. D-lactic acid production from cellooligosaccharides and β-glucan using L-LDH gene-deficient and endoglucanase-secreting Lactobacillus plantarum. Appl Microbiol Biotechnol, 2010, 85(3): 643-650.

[40]

Pal P, Sikder J, Roy S, Giorno L. Process intensification in lactic acid production: a review of membrane based processes. Chem Eng Process, 2009, 48(11–12): 1549-1559.

[41]

Park DH, Cha JM, Ryu HW, Lee GW, Yu EY, Rhee JI, Park JJ, Kim SW, Lee IW, Joe YI. Hydrogen sulfide removal utilizing immobilized Thiobacillus sp. IW with Ca-alginate bead. Biochem Eng J, 2002, 11(2–3): 167-173.

[42]

Poncelet D, Neufeld R, Goosen M, Burgarski B, Babak V. Formation of microgel beads by electric dispersion of polymer solutions. AIChE J, 1999, 45(9): 2018-2023.

[43]

Qin J, Zhao B, Wang X, Wang L, Yu B, Ma Y, Ma C, Tang H, Sun J, Xu P. Non-sterilized fermentative production of polymer-grade l-lactic acid by a newly isolated thermophilic strain Bacillus sp. 2–6. PLoS ONE, 2009, 4(2): e4359.

[44]

Radosavljević M, Lević S, Belović M, Pejin J, Djukić-Vuković A, Mojović L, Nedović V. Immobilization of Lactobacillus rhamnosus in polyvinyl alcohol/calcium alginate matrix for production of lactic acid. Bioprocess Biosyst Eng, 2019

[45]

Roukas T, Lazarides H, Kotzekidou P. Ethanol production from deproteinized whey by Saccharomyces cerevisiae cells entrapped in different immobilization matrices. Milchwissenschaft, 1991, 46(7): 438-441.

[46]

Sahin S. Optimization of the immobilization conditions of horseradish peroxidase on TiO2–COOH nanoparticles by Box–Behnken design. J Nat Appl Sci, 2019

[47]

Tang Y, Pang L, Wang D. Preparation and characterization of borate bioactive glass cross-linked PVA hydrogel. J Non-Cryst Solids, 2017, 476: 25-29.

[48]

Tapia MS, Alzamora SM, Chirife J. 10 effects of water activity (aw) on microbial stability: as a hurdle in food preservation. Water activity foods, 2008, New York: Wiley.

[49]

Thakur A, Panesar PS, Saini MS. Parametric optimization of lactic acid production by immobilized Lactobacillus casei using Box–Behnken design. Periodica Polytech Chem Eng, 2018, 62(3): 274-285.

[50]

Valli M, Sauer M, Branduardi P, Borth N, Porro D, Mattanovich D. Intracellular pH distribution in Saccharomyces cerevisiae cell populations, analyzed by flow cytometry. Appl Environ Microbiol, 2005, 71(3): 1515-1521.

[51]

Vijayakumar J, Aravindan R, Viruthagiri T. Recent trends in the production, purification and application of lactic acid. Chem Biochem Eng Q, 2008, 22(2): 245-264.

[52]

Wada M, Kato J, Chibata I. Continuous production of ethanol using immobilized growing yeast cells. Eur J Appl Microbiol Biotechnol, 1980, 10(4): 275-287.

[53]

Wahla AQ, Iqbal S, Anwar S, Firdous S, Mueller JA. Optimizing the metribuzin degrading potential of a novel bacterial consortium based on Taguchi design of experiment. J Hazard Mater, 2019, 366: 1-9.

[54]

Walsh PK, Isdell FV, Noone SM, O’Donovan MG, Malone DM. Growth patterns of Saccharomyces cerevisiae microcolonies in alginate and carrageenan gel particles: effect of physical and chemical properties of gels. Enzyme Microb Technol, 1996, 18(5): 366-372.

[55]

Wang J, Huang J, Guo H, Jiang S, Zhang J, Ning Y, Fang M, Liu S. Optimization of immobilization conditions for Lactobacillus penntosus cells. Bioprocess Biosyst Eng, 2020

[56]

Wendhausen R, Fregonesi A, Moran PJ, Joekes I, Rodrigues JAR, Tonella E, Althoff K. Continuous fermentation of sugar cane syrup using immobilized yeast cells. J Biosci Bioeng, 2001, 91(1): 48-52.

[57]

Won K, Kim S, Kim K-J, Park HW, Moon S-J. Optimization of lipase entrapment in Ca-alginate gel beads. Process Biochem, 2005, 40(6): 2149-2154.

[58]

Wu J, Wang JL, Li MH, Lin JP, Wei DZ. Optimization of immobilization for selective oxidation of benzyl alcohol by Gluconobacter oxydans using response surface methodology. Bioresour Technol, 2010, 101(23): 8936-8941.

[59]

Xu K, Xu P. Efficient production of L-lactic acid using co-feeding strategy based on cane molasses/glucose carbon sources. Bioresour Technol, 2014, 153: 23-29.

[60]

Zhan J, Jiang S, Pan L. Immobilization of phospholipase A1 using a polyvinyl alcohol-alginate matrix and evaluation of the effects of immobilization. Braz J Chem Eng, 2013, 30(4): 721-728.

[61]

Zhao Z, Xie X, Wang Z, Tao Y, Niu X, Huang X, Liu L, Li Z. Immobilization of Lactobacillus rhamnosus in mesoporous silica-based material: an efficiency continuous cell-recycle fermentation system for lactic acid production. J Biosci Bioeng, 2016, 121(6): 645-651.

[62]

Zhu GL, Hu YY, Wang QR. Nitrogen removal performance of anaerobic ammonia oxidation co-culture immobilized in different gel carriers. Water Sci Technol, 2009, 59(12): 2379-2386.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/