Millettia pinnata: a study on the extraction of fibers and reinforced composites

P. B. Mohankumara , Shraddha Prashant Thakare , Vijaykumar Guna , G. R. Arpitha

Bioresources and Bioprocessing ›› 2020, Vol. 7 ›› Issue (1) : 3

PDF
Bioresources and Bioprocessing ›› 2020, Vol. 7 ›› Issue (1) : 3 DOI: 10.1186/s40643-019-0292-2
Research

Millettia pinnata: a study on the extraction of fibers and reinforced composites

Author information +
History +
PDF

Abstract

In this work, the potential for using Millettia pinnata stalk for extracting cellulosic natural fibers and its subsequent use in reinforced composites was studied. The extracted fibers were characterized for its composition, mechanical, thermal stability and morphological properties. Compositional analysis showed that the fibers possessed 54% cellulose, 12% hemicellulose, 15% lignin and 11% ash. The tensile strength of the fiber was 310 MPa, which is comparable to cotton and linen. The tensile strength of the M. pinnata fiber-reinforced polypropylene composites was 17.96 MPa which was similar to other natural fiber-based composites. M. pinnata fibers appear promising for a wide range of applications including textiles and other typical composites applications.

Keywords

Natural fibers / Biopolymers / Lignocellulosic material / Composites / Green materials

Cite this article

Download citation ▾
P. B. Mohankumara, Shraddha Prashant Thakare, Vijaykumar Guna, G. R. Arpitha. Millettia pinnata: a study on the extraction of fibers and reinforced composites. Bioresources and Bioprocessing, 2020, 7(1): 3 DOI:10.1186/s40643-019-0292-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bhuvaneswari HB, Vinayaka DL, Ilangovan M, Reddy N. Completely biodegradable banana fiber–wheat gluten composites for dielectric applications. J Mater Sci, 2017, 28(17): 12383-12390.

[2]

Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P. Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose, 2011, 18(2): 433-442.

[3]

Guna VK, Murugesan G, Basavarajaiah BH, Ilangovan M, Olivera S, Krishna V, Reddy N. Plant-based completely biodegradable printed circuit boards. IEEE Trans Electron Devices, 2016, 63(12): 4893-4898.

[4]

Guna V, Ilangovan M, Anantha Prasad MG, Reddy N. Water hyacinth: a unique source for sustainable materials and products. ACS Sustain Chem Eng, 2017, 5(6): 4478-4490.

[5]

Guna V, Ilangovan M, Nataraj D, Reddy N. Bioproducts from wheat gluten with high strength and aqueous stability using cashew nut shell liquid as plasticizer. J Appl Polym Sci, 2018, 135(43): 46719.

[6]

Guna V, Ilangovan M, Hu C, Venkatesh K, Reddy N. Valorization of sugarcane bagasse by developing completely biodegradable composites for industrial applications. Ind Crops Prod, 2019, 131: 25-31.

[7]

Guna V, Ilangovan M, Rather MH, Giridharan BV, Prajwal B, Krishna KV, Venkatesh K, Reddy N. Groundnut shell/rice husk agro-waste reinforced polypropylene hybrid biocomposites. J Build Eng, 2019, 27: 100991.

[8]

Guna V, Ilangovan M, Nagananda GS, Venkatesh K, Reddy N. Biofibers and biocomposites from sabai grass: a unique renewable resource. Carbohyd Polym, 2019, 218: 243-249.

[9]

Guna V, Ilangovan M, Hu C, Nagananda GS, Ananthaprasad MG, Venkatesh K, Reddy N. Antimicrobial natural cellulose fibers from Hyptis suaveolens for potential biomedical and textiles applications. J Nat Fibers, 2019

[10]

Haafiz MM, Eichhorn SJ, Hassan A, Jawaid M. Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohyd Polym, 2013, 93(2): 628-634.

[11]

Ilangovan M, Guna V, Olivera S, Ravi A, Muralidhara HB, Santosh MS, Reddy N. Highly porous carbon from a natural cellulose fiber as high efficiency sorbent for lead in waste water. Bioresour Technol, 2017, 245: 296-299.

[12]

Ilangovan M, Guna V, Keshavanarayana G, Reddy N. Tensile and flexural properties of polypropylene composites reinforced with raw bagasse. Sugar Tech, 2018, 20(4): 454-463.

[13]

Ilangovan M, Guna V, Hu C, Nagananda GS, Reddy N. Curcuma longa L. plant residue as a source for natural cellulose fibers with antimicrobial activity. Ind Crops Prod, 2018, 112: 556-560.

[14]

Ilangovan M, Guna V, Hu C, Takemura A, Leman Z, Reddy N. Dehulled coffee husk-based biocomposites for green building materials. J Thermoplast Compos Mater, 2019

[15]

Jeffries TW. Biodegradation of lignin and hemicelluloses. Biochemistry of microbial degradation, 1994, Dordrecht: Springer, 233-277.

[16]

Kale RD, Getachew Alemayehu T, Gorade VG. Extraction and characterization of lignocellulosic fibers from Girardinia bullosa (Steudel) Wedd. (Ethiopian kusha plant). J Nat Fibers, 2018

[17]

Kalita BB, Jose S, Baruah S, Kalita S, Saikia SR. Hibiscus sabdariffa (Roselle): a potential source of bast fiber. J Nat Fibers, 2019, 16(1): 49-57.

[18]

Kargarzadeh H, Ahmad I, Abdullah I, Dufresne A, Zainudin SY, Sheltami RM. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose, 2012, 19(3): 855-866.

[19]

Ludueña L, Fasce D, Alvarez VA, Stefani PM. Nanocellulose from rice husk following alkaline treatment to remove silica. BioResources, 2011, 6(2): 1440-1453.

[20]

Manjula P, Srinikethan G, Shetty KV. Biofibres from biofuel industrial byproduct—Pongamia pinnata seed hull. Biores Bioprocess, 2017, 4(1): 14.

[21]

Mohan NH, Ammayappan L, Sarma DK, Debnath S, Tamuli MK. Characterization of thermal properties of pig hair fiber. J Nat Fibers, 2017, 14(4): 459-465.

[22]

Ni H, Li Y, Fu S. Morphological structure and properties of bamboo shell fiber. J Nat Fibers, 2018, 15(4): 586-595.

[23]

Perumalsamy H, Jang MJ, Kim JR, Kadarkarai M, Ahn YJ. Larvicidal activity and possible mode of action of four flavonoids and two fatty acids identified in Millettia pinnata seed toward three mosquito species. Parasites Vectors, 2015, 8(1): 237.

[24]

Reddy N, Yang Y. Properties and potential applications of natural cellulose fibers from the bark of cotton stalks. Bioresour Technol, 2009, 100(14): 3563-3569.

[25]

Segal LGJMA, Creely JJ, Martin AE Jr, Conrad CM. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J, 1959, 29(10): 786-794.

[26]

Srinivasan K, Muruganandan S, Lal J, Chandra S, Tandan SK, Raviprakash V, Kumar D. Antinociceptive and antipyretic activities of Pongamia pinnata leaves. Phytother Res, 2003, 17(3): 259-264.

[27]

Vinayaka DL, Guna V, Madhavi D, Arpitha M, Reddy N. Ricinus communis plant residues as a source for natural cellulose fibers potentially exploitable in polymer composites. Ind Crops Prod, 2017, 100: 126-131.

[28]

Wang C, Bai S, Yue X, Ren Z. Extraction and performance characterization of the carexmeyeriana fiber. J Nat Fibers, 2016, 13(6): 759-768.

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/