A sustainable process for biodiesel production using Zn/Mg oxidic species as active, selective and reusable heterogeneous catalysts

Marisa B. Navas , José F. Ruggera , Ileana D. Lick , Mónica L. Casella

Bioresources and Bioprocessing ›› 2020, Vol. 7 ›› Issue (1) : 4

PDF
Bioresources and Bioprocessing ›› 2020, Vol. 7 ›› Issue (1) : 4 DOI: 10.1186/s40643-019-0291-3
Research

A sustainable process for biodiesel production using Zn/Mg oxidic species as active, selective and reusable heterogeneous catalysts

Author information +
History +
PDF

Abstract

This paper describes the preparation and characterization of MgO and ZnO-based catalysts, pure and mixed in different proportions, supported on γ-Al2O3. Their catalytic performance was studied in the transesterification of soybean oil and castor oil with methanol and butanol, attempting to produce biodiesel. XRD (X-ray diffraction), SEM–EDS (scanning electron microscopy–energy dispersive X-ray spectroscopy), CO2-adsorption and N2-adsorption allowed characterizing the prepared catalysts. The characterization results were in all cases consistent with mesoporous solids with high specific surface area. All the catalysts exhibited good results, especially in the transesterification of castor oil using butanol. For this reaction, the reuse was tested, maintaining high FABE (fatty acid butyl esters) yields after four cycles. This good performance can be attributed to the basic properties of the Mg species, and simultaneously, to the amphoteric properties of ZnO, which allow both triglycerides and free fatty acids to be converted into esters. Using these catalysts, it is possible to obtain second-generation biodiesel, employing castor oil, a raw material that does not compete with the food industry. In addition, butanol can be produced from renewable biomass.

Keywords

Biodiesel / Heterogeneous catalysts / Soybean oil / Castor oil / Transesterification / Mg/Zn species

Cite this article

Download citation ▾
Marisa B. Navas, José F. Ruggera, Ileana D. Lick, Mónica L. Casella. A sustainable process for biodiesel production using Zn/Mg oxidic species as active, selective and reusable heterogeneous catalysts. Bioresources and Bioprocessing, 2020, 7(1): 4 DOI:10.1186/s40643-019-0291-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdullah B, Muhammad S, Shokravi Z, Ismail S, Kassim K, Mahmood A, Aziz M. Fourth generation biofuel: a review on risks and mitigation strategies. Renew Sustain Energy Rev, 2019, 107: 37-50.

[2]

Adeniyi G, Ighalo J, Adeoye S, Onifade V. Modelling and optimisation of biodiesel production from Euphorbia lathyris using ASPEN Hysys. SN Appl Sci, 2019, 1: 1452.

[3]

Alaei S, Haghighi M, Toghiani J, Vahid B. Magnetic and reusable MgO/MgFe2O4 nanocatalyst for biodiesel production from sunflower oil: Influence of fuel ratio in combustion synthesis on catalytic properties and performance. Ind Crops Prod, 2018, 117: 322-332.

[4]

Angelescu E, Pavel O, Birjega R, Florea M, Zavoianu R. The impact of the ‘‘memory effect’’ on the catalytic activity of Mg/Al; Mg, Zn/Al; Mg/Al, Ga hydrotalcite-like compounds used as catalysts for cycloxene epoxidation. Appl Catal A, 2008, 341(2008): 50-57.

[5]

ASTM D6584. Standard test method for determination of free and total glycerin in B-100 biodiesel methyl esters by gas chromatography

[6]

Bagabas A, Alshammari A, Aboud M, Kosslick H. Room-temperature synthesis of zinc oxide nanoparticles in different media and their application in cyanide photodegradation. Nanoscale Res Lett, 2013, 8: 516-525.

[7]

Baskar G, Soumiya S. Production of biodiesel from castor oil using iron (II) doped zinc oxide nanocatalyst. Renewable Energy, 2016, 98: 101-107.

[8]

Boonyuen S, Smith S, Malaithong M, Prokaew A, Cherdhirunkorn B, Luengnaruemitchai A. Biodiesel production by a renewable catalyst from calcined Turbo jourdani (Gastropoda: Turbinidae) Shells. J Cleaner Prod, 2018, 177: 925-929.

[9]

Borges M, Díaz L. Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: a review. Renew Sustain Energy Rev, 2012, 16: 839-2849.

[10]

Chuah L, Klemês J, Yusup S, Bokhari A, Akbar M. A review of cleaner intensification technologies in biodiesel production. J Clean Prod, 2017, 146: 181-193.

[11]

Chuayplod P, Trakarnpruk W. Transesterification of rice bran oil with methanol catalyzed by Mg(Al)La hydrotalcites and metal/MgAl oxides. Ind Eng Chem Res, 2009, 48: 4177-4183.

[12]

Conceição M, Candeia R, Silva F, Bezerra A, Fernandes V Jr, Souza A. Thermoanalytical characterization of castor oil biodiesel. Renew Sustain Energy Rev, 2007, 11: 964-975.

[13]

da Silva Filho S, Carvalho Miranda A, Farias Silva T, Araújo Calarge F, Rodrigues de Souza R, Curvelo Santana J, Tambourgi E. Environmental and techno-economic considerations on biodiesel production from waste frying oil in Sao Paulo city. J Clean Prod, 2018, 183: 1034-1042.

[14]

Elango R, Sathiasivan K, Muthukumaran C, Thangavelu V, Rajesh M, Tamilarasan K. Transesterification of castor oil for biodiesel production: process optimization and characterization. Microchem J, 2019, 145: 1162-1168.

[15]

EN 14105. Fat and oil derivatives—Fatty Acid Methyl Esters (FAME)—Determination of free and total glycerol and mono-, di-, tri-glyceride content

[16]

Hájek M, Skopal F, Vávra A, Kocík J. Transesterification of rapeseed oil by butanol and separation of butyl ester. J Clean Prod, 2017, 1: 28-33.

[17]

Hoekman S, Broch A, Robbins C, Ceniceros E, Natarajan M. Review of biodiesel composition, properties and specification. Renew Sustain Energy Rev, 2012, 16: 143-169.

[18]

Issariyakul T, Dalai A. Biodiesel from vegetable oils. Renew Sustain Energy Rev, 2014, 31: 446-471.

[19]

Keera S, El Sabagh S, Taman A. Castor oil biodiesel production and optimization. Egypt J Petrol, 2018, 27: 979-984.

[20]

Knothe G, Razón L. Biodiesel fuels. Prog Energy Combust Sci, 2017, 58: 36-59.

[21]

Koh MY, Mohd Ghazi TI. A review of biodiesel production from Jatropha curcas L. oil. Renew Sustain Energy Rev, 2011, 15: 2240-2251.

[22]

Kolesinska B, Fraczyk J, Binczarski M, Modelska M, Berlowska J, Dziugan P, Antolak H. Butanol synthesis routes for biofuel production: trends and perspectives. Materials, 2019, 12: 350.

[23]

Kumar M, Gayen K. Developments in biobutanol production: new insights. Appl Energy, 2011, 88: 1999-2012.

[24]

Kuśtrowski P, Sułkowska D, Chmielarz L, Rafalska-Łasocha A, Dudek B, Dziembaj R. Influence of thermal treatment conditions on the activity of hydrotalcite-derived Mg–Al oxides in the aldol condensation of acetone. Microporous Mesoporous Mater, 2005, 78: 11-22.

[25]

Kwon D, Kang Y, An S, Yang I, Jung J. Tuning the base properties of Mg–Al hydrotalcite catalysts using their memory effect. J Energy Chem, 2019, 46(2020): 229-236.

[26]

Lee A, Wilson K. Recent developments in heterogeneous catalysis for the sustainable production of biodiesel. Catal Today, 2015, 242: 3-18.

[27]

Lee H, Yunus R, Juan J, Taufiq-Yap Y. Process optimization design for jatropha-based biodiesel production using response surface methodology. Fuel Process Technol, 2011, 92: 2420-2428.

[28]

Lee H, Taufiq-Yap Y, Hussein M, Yunus R. Transesterification of jatropha oil with methanol over MgZn mixed metal oxide catalysts. Energy, 2013, 49: 12-18.

[29]

Lin CY, Lin HA, Hung LB. Fuel structure and properties of biodiesel produced by the peroxidation process. Fuel, 2006, 85: 1743-1749.

[30]

Mahdavi V, Monajemi A. Optimization of operational conditions for biodiesel production from cottonseed oil on CaO–MgO/Al2O3 solid base catalysts. J Taiwan Inst Chem Eng, 2014, 45: 2286-2292.

[31]

Margellou A, Koutsouki A, Petrakis D, Vaimakisa T, Manosb G, Kontominasa M, Pomonis P. Enhanced production of biodiesel over MgO catalysts synthesized in the presence of Poly-Vinyl-Alcohol (PVA). Ind Crops Prod, 2018, 114: 146-153.

[32]

Meneghetti S, Meneghetti M, Wolf C, Silva E, Lima G, de Lira Silva L, Serra T, Cauduro F, de Oliveira L. Biodiesel from castor oil: a comparison of ethanolysis versus methanolysis. Energy Fuels, 2006, 20: 2262-2265.

[33]

Meneghetti SM, Meneghetti MR, Serra TM, Barbosa DC, Wolf CR. Biodiesel production from vegetable oil mixtures: cottonseed, soybean, and castor oils. Energy Fuels, 2007, 21: 3746-3747.

[34]

Navas M, Lick I, Bolla P, Casella M, Ruggera J. Transesterification of soybean and castor oil with methanol and butanol using heterogeneous basic catalysts to obtain biodiesel. Chem Eng Sci, 2018, 187: 444-454.

[35]

Neimark A, Sing K, Thommes M. Ertl G, Knözinger H, Schüth F, Weitkamp J. Characterization of solid catalysts. Handbook of heterogeneous catalysis, 2008, New York: Wiley, 72.

[36]

Ngamcharussrivichai C, Totarat P, Bunyakiat K. Ca and Zn mixed oxide as a heterogeneous base catalyst for transesterification of palm kernel oil. Appl Catal A, 2008, 341: 77-85.

[37]

Olutoye M, Hameed B. Production of biodiesel fuel by transesterification of different vegetable oils with methanol using Al2O3 modified MgZnO catalyst. Bioresour Technol, 2013, 132: 103-108.

[38]

Pan H, Li H, Zhang H, Wang A, Jin D, Yan S. Effective production of biodiesel from non-edible oil using facile synthesis of imidazolium salts-based Brønsted–Lewis solid acid and co-solvent. Energy Convers Manage, 2018, 166: 534-544.

[39]

Pasupulety N, Rempel G, Ng F. Studies on Mg-Zn mixed oxide catalyst for biodiesel production. Appl Catal A, 2015, 489: 77-85.

[40]

Rahman W, Fatima A, Anwer A, Athar M, Khan M, Khan N, Halder G. Biodiesel synthesis from eucalyptus oil by utilizing waste egg shell-derived calcium based metal oxide catalyst. Process Saf Environ Prot, 2019, 122: 313-319.

[41]

Rubio-Caballero J, Santamaría-González J, Mérida-Robles J, Moreno-Tost R, Jiménez-López A, Maireles-Torres P. Calcium zincate as precursor of active catalysts for biodiesel production under mild conditions. Appl Catal B, 2009, 91: 339-346.

[42]

Sánchez M, Navas M, Ruggera J, Casella M, Aracil J, Martínez M. Biodiesel production optimization using γ-Al2O3. Energy, 2014, 73: 661-669.

[43]

Shan R, Lu L, Shia Y, Yuan H, Shie J. Catalysts from renewable resources for biodiesel production. Energy Convers Manag, 2018, 178: 277-289.

[44]

Sharma Y, Singh B, Korstad J. Latest developments on application of heterogenous basic catalysts for an efficient and eco-friendly synthesis of biodiesel: a review. Fuel, 2011, 90: 1309-1324.

[45]

Steen EJ, Chan R, Prasad N, Myers S, Petzold C, Redding A, Ouellet M, Keasling JD. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Fact, 2008, 7: 1-8.

[46]

Sun S, Li X. Functional ionic liquids catalyzed the esterification of ricinoleic acid with methanol to prepare biodiesel: optimization by response surface methodology. J Am Oil Chem Soc, 2016, 93: 757-764.

[47]

Sun S, Guo J, Duan X. Biodiesel preparation from Phoenix tree seed oil using ethanol as acyl acceptor. Ind Crops Prod, 2019, 137: 270-275.

[48]

Thommes M, Kaneko K, Neimark A, Olivier J, Rodriguez-Reinoso F, Rouquerol J, Sing K. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Applied Chemistry, 2015, 87(9–10): 1051-1069.

[49]

Ullah F, Dong L, Bano A, Peng Q, Huang J. Current advances in catalysis toward sustainable biodiesel production. J Energy Inst, 2016, 89: 282-292.

[50]

Veiga P, Veloso C, Henriques C. Synthesis of Zn, La-catalysts for biodiesel production from edible and acid soybean oil. Renew Energy, 2016, 99: 543-552.

[51]

Wang P, Sun S. Enhanced enzymatic preparation of biodiesel using ricinoleic acid as acyl donor: optimization using response surface methodology. J Oleo Sci, 2016, 65(9): 785-795.

[52]

Xi Y, Davis RJ. Nanocrystalline MgO catalysts for the Henry reaction of benzaldehyde and nitromethane. Renew Sust Energy Rev J Mol Catal A, 2011, 341: 22-27.

[53]

Yan S, Salley S, Ng K. Simultaneous transesterification and esterification of unrefined or waste oils over ZnO–La2O3 catalysts. Appl Catal A, 2009, 353: 203-212.

[54]

Yan F, Yuan Z, Lu P, Luo W, Yang L, Deng L. FeZn double-metal cyanide complexes catalyzed biodiesel production from high-acid-value oil. Renew Energy, 2011, 36: 2026-2031.

[55]

Zhang Q, Li H, Yang S. Facile and low-cost synthesis of mesoporous Ti–Mo Bi-metal oxide catalysts for biodiesel production from esterification of free fatty acids in jatropha curcas crude oil. J Oleo Sci, 2018, 67(5): 579-588.

[56]

Zhang Q, Wei F, Ma P, Zhang Y, Wei F, Chen F. Mesoporous Al–Mo oxides as an effective and stable catalyst for the synthesis of biodiesel from the esterification of free-fatty acids in non-edible oils. Waste Biomass Valor, 2018, 9: 911-918.

Funding

Fondo para la Investigación Científica y Tecnológica(PICT 2015 N° 0737)

Universidad Nacional de La Plata(Projects X700)

Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA)

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/