Selection and screening strategies in directed evolution to improve protein stability

Chang Ren , Xin Wen , Jun Mencius , Shu Quan

Bioresources and Bioprocessing ›› 2019, Vol. 6 ›› Issue (1) : 53

PDF
Bioresources and Bioprocessing ›› 2019, Vol. 6 ›› Issue (1) : 53 DOI: 10.1186/s40643-019-0288-y
Review

Selection and screening strategies in directed evolution to improve protein stability

Author information +
History +
PDF

Abstract

Protein stability is not only fundamental for experimental, industrial, and therapeutic applications, but is also the baseline for evolving novel protein functions. For decades, stability engineering armed with directed evolution has continued its rapid development and inevitably poses challenges. Generally, in directed evolution, establishing a reliable link between a genotype and any interpretable phenotype is more challenging than diversifying genetic libraries. Consequently, we set forth in a small picture to emphasize the screening or selection techniques in protein stability-directed evolution to secure the link. For a more systematic review, two main branches of these techniques, namely cellular or cell-free display and stability biosensors, are expounded with informative examples.

Keywords

Directed evolution / Protein folding / Protein stability / Cell surface display / Cell-free display / Reporter protein / Stability biosensor

Cite this article

Download citation ▾
Chang Ren, Xin Wen, Jun Mencius, Shu Quan. Selection and screening strategies in directed evolution to improve protein stability. Bioresources and Bioprocessing, 2019, 6(1): 53 DOI:10.1186/s40643-019-0288-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Angov E. Codon usage: nature’s roadmap to expression and folding of proteins. Biotechnol J, 2011, 6(6): 650-659.

[2]

Asial I, Cheng YX, Engman H, Dollhopf M, Wu BH, Nordlund P, Cornvik T. Engineering protein thermostability using a generic activity-independent biophysical screen inside the cell. Nat Commun, 2013, 4: 2901.

[3]

Behar G, Sole V, Defontaine A, Maillasson M, Quemener A, Jacques Y, Tellier C. Evolution of interleukin-15 for higher E. coli expression and solubility. Protein Eng Des Sel, 2011, 24(3): 283-290.

[4]

Belien T, Verjans P, Courtin CM, Delcour JA. Phage display based identification of novel stabilizing mutations in glycosyl hydrolase family 11 B. subtilis endoxylanase XynA. Biochem Biophys Res Commun, 2008, 368(1): 74-80.

[5]

Bertens P, Heijne W, Van der Wel N, Wellink J, Van Kammen A. Studies on the C-terminus of the Cowpea mosaic virus movement protein (journal article). Adv Virol, 2003, 148(2): 265-279.

[6]

Bloom JD, Labthavikul ST, Otey CR, Arnold FH. Protein stability promotes evolvability. Proc Natl Acad Sci USA, 2006, 103(15): 5869-5874.

[7]

Boder ET, Wittrup KD. Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol, 1997, 15(6): 553-557.

[8]

Boock JT, King BC, Taw MN, Conrado RJ, Siu KH, Stark JC, Walker LP, Gibson DM, DeLisa MP. Repurposing a bacterial quality control mechanism to enhance enzyme production in living cells. J Mol Biol, 2015, 427(6): 1451-1463.

[9]

Buchanan A. Douthwaite JA, Jackson RH. Evolution of protein stability using ribosome display. Ribosome display and related technologies: methods and protocols, 2012, New York: Springer New York, 191-212.

[10]

Cabantous S, Pedelacq JD, Mark BL, Naranjo C, Terwilliger TC, Waldo GS. Recent advances in GFP folding reporter and split-GFP solubility reporter technologies. Application to improving the folding and solubility of recalcitrant proteins from Mycobacterium tuberculosis. J Struct Funct Genomics, 2005, 6(2–3): 113-119.

[11]

Cabantous S, Terwilliger TC, Waldo GS. Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat Biotechnol, 2005, 23(1): 102-107.

[12]

Cabantous S, Nguyen HB, Pedelacq JD, Koraichi F, Chaudhary A, Ganguly K, Lockard MA, Favre G, Terwilliger TC, Waldo GS. A new protein–protein interaction sensor based on tripartite split-GFP association. Sci Rep, 2013, 3: 2854.

[13]

Canchi DR, Garcia AE. Cosolvent effects on protein stability. Annu Rev Phys Chem, 2013, 64: 273-293.

[14]

Chautard H, Blas-Galindo E, Menguy T, Grand’Moursel L, Cava F, Berenguer J, Delcourt M. An activity-independent selection system of thermostable protein variants. Nat Methods, 2007, 4(11): 919-921.

[15]

Chen Y, Li S, Chen T, Hua H, Lin Z. Random dissection to select for protein split sites and its application in protein fragment complementation. Protein Sci, 2009, 18(2): 399-409.

[16]

Chen H, Ullah J, Jia J. Progress in Bacillus subtilis spore surface display technology towards environment, vaccine development, and biocatalysis. J Mol Microbiol Biotechnol, 2017, 27(3): 159-167.

[17]

Cherf GM, Cochran JR. Applications of yeast surface display for protein engineering. Methods Mol Biol, 2015, 1319: 155-175.

[18]

Cornvik T, Dahlroth SL, Magnusdottir A, Herman MD, Knaust R, Ekberg M, Nordlund P. Colony filtration blot: a new screening method for soluble protein expression in Escherichia coli. Nat Methods, 2005, 2(7): 507-509.

[19]

Costa S, Almeida A, Castro A, Domingues L. Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system. Front Microbiol, 2014, 5: 63.

[20]

DasSarma S, DasSarma P. Gas vesicle nanoparticles for antigen display. Vaccines, 2015, 3(3): 686-702.

[21]

Daunert S, Barrett G, Feliciano JS, Shetty RS, Shrestha S, Smith-Spencer W. Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev, 2000, 100(7): 2705-2738.

[22]

de Marco A, Deuerling E, Mogk A, Tomoyasu T, Bukau B. Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli. BMC Biotechnol, 2007, 7: 32.

[23]

DeLisa MP, Tullman D, Georgiou G. Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. Proc Natl Acad Sci USA, 2003, 100(10): 6115-6120.

[24]

Deller MC, Kong L, Rupp B. Protein stability: a crystallographer’s perspective. Acta Crystallogr Sect F Struct Biol Commun, 2016, 72: 72-95.

[25]

Dreher ML, Gherardi E, Skerra A, Milstein C. Colony assays for antibody fragments expressed in bacteria. J Immunol Methods, 1991, 139(2): 197-205.

[26]

Elena C, Ravasi P, Castelli ME, Peiru S, Menzella HG. Expression of codon optimized genes in microbial systems: current industrial applications and perspectives. Front Microbiol, 2014, 5: 21.

[27]

Esvelt KM, Carlson JC, Liu DR. A system for the continuous directed evolution of biomolecules. Nature, 2011, 472(7344): U499-U550.

[28]

Fiacco SV, Kelderhouse LE, Hardy A, Peleg Y, Hu B, Ornelas A, Yang P, Gammon ST, Howell SM, Wang P, Takahashi TT, Millward SW, Roberts RW. Directed evolution of scanning unnatural-protease-resistant (SUPR) peptides for in vivo applications. ChemBioChem, 2016, 17(17): 1643-1651.

[29]

Fisher AC, DeLisa MP. Efficient isolation of soluble intracellular single-chain antibodies using the twin-arginine translocation machinery. J Mol Biol, 2009, 385(1): 299-311.

[30]

Fisher AC, Kim W, DeLisa MP. Genetic selection for protein solubility enabled by the folding quality control feature of the twin-arginine translocation pathway. Protein Sci, 2006, 15(3): 449-458.

[31]

Fisher AC, Rocco MA, De Lisa MP. Evans JTC, Xu M-Q. Genetic selection of solubility-enhanced proteins using the twin-arginine translocation system. Heterologous gene expression in E. coli: methods and protocols, 2011, Totowa: Humana Press, 53-67.

[32]

Foit L, Morgan GJ, Kern MJ, Steimer LR, von Hacht AA, Titchmarsh J, Warriner SL, Radford SE, Bardwell JC. Optimizing protein stability in vivo. Mol Cell, 2009, 36(5): 861-871.

[33]

Foit L, Mueller-Schickert A, Mamathambika BS, Gleiter S, Klaska CL, Ren G, Bardwell JC. Genetic selection for enhanced folding in vivo targets the Cys14-Cys38 disulfide bond in bovine pancreatic trypsin inhibitor. Antioxid Redox Signal, 2011, 14(6): 973-984.

[34]

Francis JC, Hansche PE. Directed evolution of metabolic pathways in microbial populations. I. Modification of the acid phosphatase pH optimum in S. cerevisiae. Genetics, 1972, 70(1): 59-73.

[35]

Galan A, Comor L, Horvatic A, Kules J, Guillemin N, Mrljak V, Bhide M. Library-based display technologies: where do we stand?. Mol BioSyst, 2016, 12(8): 2342-2358.

[36]

Galarneau A, Primeau M, Trudeau L-E, Michnick SW. β-Lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein–protein interactions. Nat Biotechnol, 2002, 20(6): 619-622.

[37]

He M, Taussig MJ. Eukaryotic ribosome display with in situ DNA recovery. Nat Methods, 2007, 4(3): 281-288.

[38]

Homaei AA, Sariri R, Vianello F, Stevanato R. Enzyme immobilization: an update. J Chem Biol, 2013, 6(4): 185-205.

[39]

Janocha S, Bichet A, Zollner A, Bernhardt R. Substitution of lysine with glutamic acid at position 193 in bovine CYP11A1 significantly affects protein oligomerization and solubility but not enzymatic activity. Biochim Biophys Acta, 2011, 1814(1): 126-131.

[40]

Jermutus L, Honegger A, Schwesinger F, Hanes J, Pluckthun A. Tailoring in vitro evolution for protein affinity or stability. Proc Natl Acad Sci USA, 2001, 98(1): 75-80.

[41]

Jespers L, Schon O, Famm K, Winter G. Aggregation-resistant domain antibodies selected on phage by heat denaturation. Nat Biotechnol, 2004, 22(9): 1161-1165.

[42]

Kawasaki M, Inagaki F. Random PCR-based screening for soluble domains using green fluorescent protein. Biochem Biophys Res Commun, 2001, 280(3): 842-844.

[43]

Kieke MC, Shusta EV, Boder ET, Teyton L, Wittrup KD, Kranz DM. Selection of functional T cell receptor mutants from a yeast surface-display library. Proc Natl Acad Sci USA, 1999, 96(10): 5651-5656.

[44]

Kim DS, Song HN, Nam HJ, Kim SG, Park YS, Park JC, Woo EJ, Lim HK. Directed evolution of human heavy chain variable domain (V-H) using in vivo protein fitness filter. PLoS ONE, 2014, 9(6): e98178.

[45]

Knaust RK, Nordlund P. Screening for soluble expression of recombinant proteins in a 96-well format. Anal Biochem, 2001, 297(1): 79-85.

[46]

Kondo A, Ueda M. Yeast cell-surface display—applications of molecular display. Appl Microbiol Biotechnol, 2004, 64(1): 28-40.

[47]

Kosobokova EN, Skrypnik KA, Kosorukov VS. Overview of fusion tags for recombinant proteins. Biochemistry, 2016, 81(3): 187-200.

[48]

Kothawala A, Kilpatrick K, Novoa JA, Segatori L. Quantitative analysis of alpha-synuclein solubility in living cells using split GFP complementation. PLoS ONE, 2012, 7(8): e43505.

[49]

Krumpe LR, Atkinson AJ, Smythers GW, Kandel A, Schumacher KM, McMahon JB, Makowski L, Mori T. T7 lytic phage-displayed peptide libraries exhibit less sequence bias than M13 filamentous phage-displayed peptide libraries. Proteomics, 2006, 6(15): 4210-4222.

[50]

Kurz M, Gu K, Al-Gawari A, Lohse PA. cDNA–protein fusions: covalent protein-gene conjugates for the in vitro selection of peptides and proteins. ChemBioChem, 2001, 2(9): 666-672.

[51]

Lee SY, Choi JH, Xu Z. Microbial cell-surface display. Trends Biotechnol, 2003, 21(1): 45-52.

[52]

Lindenburg L, Merkx M. Engineering genetically encoded FRET sensors. Sensors, 2014, 14(7): 11691-11713.

[53]

Lindman S, Hernandez-Garcia A, Szczepankiewicz O, Frohm B, Linse S. In vivo protein stabilization based on fragment complementation and a split GFP system. Proc Natl Acad Sci USA, 2010, 107(46): 19826-19831.

[54]

Listwan P, Terwilliger TC, Waldo GS. Automated, high-throughput platform for protein solubility screening using a split-GFP system. J Struct Funct Genomics, 2009, 10(1): 47-55.

[55]

Liu JW, Boucher Y, Stokes HW, Ollis DL. Improving protein solubility: the use of the Escherichia coli dihydrofolate reductase gene as a fusion reporter. Protein Expr Purif, 2006, 47(1): 258-263.

[56]

Lofdahl PA, Nord O, Janzon L, Nygren PA. Selection of TNF-alpha binding affibody molecules using a beta-lactamase protein fragment complementation assay. N Biotechnol, 2009, 26(5): 251-259.

[57]

Magliery TJ, Wilson CGM, Pan WL, Mishler D, Ghosh I, Hamilton AD, Regan L. Detecting protein–protein interactions with a green fluorescent protein fragment reassembly trap: scope and mechanism. J Am Chem Soc, 2005, 127(1): 146-157.

[58]

Makeyev EV, Kolb VA, Spirin AS. Enzymatic activity of the ribosome-bound nascent polypeptide. FEBS Lett, 1996, 378(2): 166-170.

[59]

Malik A, Mueller-Schickert A, Bardwell JC. Cytosolic selection systems to study protein stability. J Bacteriol, 2014, 196(24): 4333-4343.

[60]

Matsuura T, Pluckthun A. Selection based on the folding properties of proteins with ribosome display. FEBS Lett, 2003, 539(1–3): 24-28.

[61]

Maxwell KL, Mittermaier AK, Forman-Kay JD, Davidson AR. A simple in vivo assay for increased protein solubility. Protein Sci, 1999, 8(9): 1908-1911.

[62]

Mo HM, Xu Y, Yu XW. Improved soluble expression and catalytic activity of a thermostable esterase using a high-throughput screening system based on a split-GFP assembly. J Agric Food Chem, 2018, 66(48): 12756-12764.

[63]

Nagumo Y, Fujiwara K, Horisawa K, Yanagawa H, Doi N. PURE mRNA display for in vitro selection of single-chain antibodies. J Biochem, 2016, 159(5): 519-526.

[64]

Nemoto N, Miyamoto-Sato E, Husimi Y, Yanagawa H. In vitro virus: bonding of mRNA bearing puromycin at the 3ʹ-terminal end to the C-terminal end of its encoded protein on the ribosome in vitro. FEBS Lett, 1997, 414(2): 405-408.

[65]

Ormo M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ. Crystal structure of the Aequorea victoria green fluorescent protein. Science, 1996, 273(5280): 1392-1395.

[66]

Packer MS, Liu DR. Methods for the directed evolution of proteins. Nat Rev Genet, 2015, 16(7): 379-394.

[67]

Palmer T, Berks BC. The twin-arginine translocation (Tat) protein export pathway. Nat Rev Microbiol, 2012, 10(7): 483-496.

[68]

Pan JG, Kim EJ, Yun CH. Bacillus spore display. Trends Biotechnol, 2012, 30(12): 610-612.

[69]

Pershad K, Kay BK. Generating thermal stable variants of protein domains through phage display. Methods, 2013, 60(1): 38-45.

[70]

Philipps B, Hennecke J, Glockshuber R. FRET-based in vivo screening for protein folding and increased protein stability. J Mol Biol, 2003, 327(1): 239-249.

[71]

Pluckthun A. Ribosome display: a perspective. Methods Mol Biol, 2012, 805: 3-28.

[72]

Remy I, Michnick SW. Mapping biochemical networks with protein fragment complementation assays. Methods Mol Biol, 2015, 1278: 467-481.

[73]

Roberts RW, Szostak JW. RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci USA, 1997, 94(23): 12297-12302.

[74]

Rodrigue A, Chanal A, Beck K, Muller M, Wu LF. Co-translocation of a periplasmic enzyme complex by a hitchhiker mechanism through the bacterial Tat pathway. J Biol Chem, 1999, 274(19): 13223-13228.

[75]

Rodriguez-Banqueri A, Errasti-Murugarren E, Bartoccioni P, Kowalczyk L, Peralvarez-Marin A, Palacin M, Vazquez-Ibar JL. Stabilization of a prokaryotic LAT transporter by random mutagenesis. J Gen Physiol, 2016, 147(4): 353-368.

[76]

Scott DJ, Pluckthun A. Direct molecular evolution of detergent-stable G protein-coupled receptors using polymer encapsulated cells. J Mol Biol, 2013, 425(3): 662-677.

[77]

Seitz T, Bocola M, Claren J, Sterner R. Stabilisation of a (beta alpha)8-barrel protein designed from identical half barrels. J Mol Biol, 2007, 372(1): 114-129.

[78]

Sheng S, Jia H, Topiol S, Farinas ET. Engineering CotA laccase for acidic pH stability using Bacillus subtilis spore display. J Microbiol Biotechnol, 2017, 27(3): 507-513.

[79]

Shusta EV, Holler PD, Kieke MC, Kranz DM, Wittrup KD. Directed evolution of a stable scaffold for T-cell receptor engineering. Nat Biotechnol, 2000, 18(7): 754-759.

[80]

Silva C, Martins M, Jing S, Fu J, Cavaco-Paulo A. Practical insights on enzyme stabilization. Crit Rev Biotechnol, 2018, 38(3): 335-350.

[81]

Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science, 1985, 228(4705): 1315-1317.

[82]

Socha RD, Tokuriki N. Modulating protein stability—directed evolution strategies for improved protein function. FEBS J, 2013, 280(22): 5582-5595.

[83]

Stuart ES, Morshed F, Sremac M, DasSarma S. Antigen presentation using novel particulate organelles from halophilic archaea. J Biotechnol, 2001, 88(2): 119-128.

[84]

Takahashi TT, Austin RJ, Roberts RW. mRNA display: ligand discovery, interaction analysis and beyond. Trends Biochem Sci, 2003, 28(3): 159-165.

[85]

Tamura T, Hamachi I. Recent progress in design of protein-based fluorescent biosensors and their cellular applications. ACS Chem Biol, 2014, 9(12): 2708-2717.

[86]

Tan Y, Tian T, Liu W, Zhu Z, Yang C J. Advance in phage display technology for bioanalysis. Biotechnol J, 2016, 11(6): 732-745.

[87]

Taverna DM, Goldstein RA. Why are proteins marginally stable?. Proteins, 2002, 46(1): 105-109.

[88]

Ueno S, Nemoto N. cDNA display: rapid stabilization of mRNA display. Methods Mol Biol, 2012, 805: 113-135.

[89]

Waldo GS. Genetic screens and directed evolution for protein solubility. Curr Opin Chem Biol, 2003, 7(1): 33-38.

[90]

Waldo GS, Standish BM, Berendzen J, Terwilliger TC. Rapid protein-folding assay using green fluorescent protein. Nat Biotechnol, 1999, 17(7): 691-695.

[91]

Wang H, Wang Y, Yang R. Recent progress in Bacillus subtilis spore-surface display: concept, progress, and future. Appl Microbiol Biotechnol, 2017, 101(3): 933-949.

[92]

Wang J, Zhang T, Liu R, Song M, Wang J, Hong J, Chen Q, Liu H. Recurring sequence-structure motifs in (beta alpha)8-barrel proteins and experimental optimization of a chimeric protein designed based on such motifs. Biochim Biophys Acta Proteins Proteom, 2017, 1865(2): 165-175.

[93]

Wang TN, Badran AH, Huang TP, Liu DR. Continuous directed evolution of proteins with improved soluble expression. Nat Chem Biol, 2018, 14(10): 972-980.

[94]

Waraho D, DeLisa MP. Versatile selection technology for intracellular protein–protein interactions mediated by a unique bacterial hitchhiker transport mechanism. Proc Natl Acad Sci USA, 2009, 106(10): 3692-3697.

[95]

Waraho-Zhmayev D, Gkogka L, Yu TY, DeLisa MP. A microbial sensor for discovering structural probes of protein misfolding and aggregation. Prion, 2013, 7(2): 151-156.

[96]

Waraho-Zhmayev D, Meksiriporn B, Portnoff AD, DeLisa MP. Optimizing recombinant antibodies for intracellular function using hitchhiker-mediated survival selection. Protein Eng Des Sel, 2014, 27(10): 351-358.

[97]

Wehrman T, Kleaveland B, Her JH, Balint RF, Blau HM. Protein-protein interactions monitored in mammalian cells via complementation of beta -lactamase enzyme fragments. Proc Natl Acad Sci USA, 2002, 99(6): 3469-3474.

[98]

Wirsching F, Keller M, Hildmann C, Riester D, Schwienhorst A. Directed evolution towards protease-resistant hirudin variants. Mol Genet Metab, 2003, 80(4): 451-462.

[99]

Xiong P, Wang M, Zhou X, Zhang T, Zhang J, Chen Q, Liu H. Protein design with a comprehensive statistical energy function and boosted by experimental selection for foldability. Nat Commun, 2014, 5: 5330.

[100]

Yang H, Liu L, Li J, Chen J, Du G. Rational design to improve protein thermostability: recent advances and prospects. ChemBioEng Rev, 2015, 2(2): 87-94.

[101]

Yong KJ, Scott DJ. Rapid directed evolution of stabilized proteins with cellular high-throughput encapsulation solubilization and screening (CHESS). Biotechnol Bioeng, 2015, 112(3): 438-446.

[102]

Yoshikuni Y, Martin VJ, Ferrin TE, Keasling JD. Engineering cotton (+)-delta-cadinene synthase to an altered function: germacrene d-4-ol synthase. Chem Biol, 2006, 13(1): 91-98.

Funding

National Natural Science Foundation of China(31661143021)

Fundamental Research Funds for the Central Universities(22221818014)

State Key Laboratory of Bioreactor Engineering

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/