The effect of methane and odd-chain fatty acids on 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) synthesis by a Methylosinus-dominated mixed culture

Pawarisa Luangthongkam , Peter James Strong , Syarifah Nuraqmar Syed Mahamud , Paul Evans , Paul Jensen , Gene Tyson , Bronwyn Laycock , Paul Andrew Lant , Steven Pratt

Bioresources and Bioprocessing ›› 2019, Vol. 6 ›› Issue (1) : 50

PDF
Bioresources and Bioprocessing ›› 2019, Vol. 6 ›› Issue (1) : 50 DOI: 10.1186/s40643-019-0285-1
Research

The effect of methane and odd-chain fatty acids on 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) synthesis by a Methylosinus-dominated mixed culture

Author information +
History +
PDF

Abstract

A methanotrophic community was enriched in a semi-continuous reactor under non-aseptic conditions with methane and ammonia as carbon and nitrogen source. After a year of operation, Methylosinus sp., accounted for 80% relative abundance of the total sequences identified from potential polyhydroxyalkanoates (PHAs) producers, dominated the methane-fed enrichment. Prior to induction of PHA accumulation, cells harvested from the parent reactor contained low level of PHA at 4.0 ± 0.3 wt%. The cells were later incubated in the absence of ammonia with various combinations of methane, propionic acid, and valeric acid to induce biosynthesis of poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Previous studies reported that methanotrophic utilization of odd-chain fatty acids for the production of PHAs requires reducing power from methane oxidation. However, our findings demonstrated that the PHB-containing methanotrophic enrichment does not require methane availability to generate 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV)—when odd-chain fatty acids are presented. The enrichment yielded up to 14 wt% PHA with various mole fractions of 3HV monomer depending on the availability of methane and odd-fatty acids. Overall, the addition of valeric acid resulted in a higher PHA content and a higher 3HV fraction. The highest 3HV fraction (up to 65 mol%) was obtained from the methane–valeric acid experiment, which is higher than those previously reported for PHA-producing methanotrophic mixed microbial cultures.

Keywords

Methane / Methanotrophs / Polyhydroxyalkanoates / 3-Hydroxybutyrate / 3-Hydroxyvalerate

Cite this article

Download citation ▾
Pawarisa Luangthongkam, Peter James Strong, Syarifah Nuraqmar Syed Mahamud, Paul Evans, Paul Jensen, Gene Tyson, Bronwyn Laycock, Paul Andrew Lant, Steven Pratt. The effect of methane and odd-chain fatty acids on 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) synthesis by a Methylosinus-dominated mixed culture. Bioresources and Bioprocessing, 2019, 6(1): 50 DOI:10.1186/s40643-019-0285-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Albuquerque MGE, Torres CAV, Reis MAM. Polyhydroxyalkanoate (PHA) production by a mixed microbial culture using sugar molasses: effect of the influent substrate concentration on culture selection. Water Res, 2010, 44(11): 3419-3433.

[2]

Arcos-Hernandez MV, Gurieff N, Pratt S, Magnusson P, Werker A, Vargas A, . Rapid quantification of intracellular PHA using infrared spectroscopy: an application in mixed cultures. J Biotechnol, 2010, 150(3): 372-379.

[3]

Beccari M, Majone M, Massanisso P, Ramadori R. A bulking sludge with high storage response selected under intermittent feeding. Water Res, 1998, 32(11): 3403-3413.

[4]

Belova SE, Kulichevskaya IS, Bodelier PL, Dedysh SN. Methylocystis bryophila sp. nov., a facultatively methanotrophic bacterium from acidic Sphagnum peat, and emended description of the genus Methylocystis (ex Whittenbury et al. 1970) Bowman et al. 1993. Int J Syst Evol Microbiol, 2013, 63(Pt 3): 1096-1104.

[5]

Berezina N. Enhancing the 3-hydroxyvalerate component in bioplastic PHBV production by Cupriavidus necator. Biotechnol J, 2012, 7(2): 304-309.

[6]

Beun J, Dircks K, Van Loosdrecht M, Heijnen J. Poly-beta-hydroxybutyrate metabolism in dynamically fed mixed microbial cultures. Water Res, 2002, 36(5): 1167-1180.

[7]

Broholm K, Christensen TH, Jensen BK. Modelling TCE degradation by a mixed culture of methane-oxidizing bacteria. Water Res, 1992, 26(9): 1177-1185.

[8]

Chistoserdova L, Lidstrom ME. Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. Aerobic methylotrophic prokaryotes. The prokaryotes: prokaryotic physiology and biochemistry, 2013, Berlin: Springer, 267-285.

[9]

Çığgın AS, Karahan Ö, Orhon D. Effect of feeding pattern on biochemical storage by activated sludge under anoxic conditions. Water Res, 2007, 41(4): 924-934.

[10]

Colombo B, Favini F, Scaglia B, Sciarria TP, D’Imporzano G, Pognani M, . Enhanced polyhydroxyalkanoate (PHA) production from the organic fraction of municipal solid waste by using mixed microbial culture. Biotechnol Biofuels, 2017, 10(1): 201.

[11]

Criddle CS, Myung J (2016) Production of tailored PHA copolymers with methane and added co-substrates. United States patent application 14/825473

[12]

Dias JM, Lemos PC, Serafim LS, Oliveira C, Eiroa M, Albuquerque MG, . Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: from the substrate to the final product. Macromol Biosci, 2006, 6(11): 885-906.

[13]

Dionisi D, Beccari M, Di Gregorio S, Majone M, Papini MP, Vallini G. Storage of biodegradable polymers by an enriched microbial community in a sequencing batch reactor operated at high organic load rate. J Chem Technol Biotechnol, 2005, 80(11): 1306-1318.

[14]

Doi Y, Kunioka M, Nakamura Y, Soga K. Biosynthesis of copolyesters in Alcaligenes eutrophus H16 from carbon-13 labeled acetate and propionate. Macromolecules, 1987, 20(12): 2988-2991.

[15]

Doronina NV, Ezhov VA, Trotsenko YA. Growth of Methylosinus trichosporium OB3b on methane and poly-β-hydroxybutyrate biosynthesis. Appl Biochem Microbiol, 2008, 44(2): 182-185.

[16]

Fitch MW, Speitel GE Jr, Georgiou G. Degradation of trichloroethylene by methanol-grown cultures of Methylosinus trichosporium OB3b PP358. Appl Environ Microbiol, 1996, 62(3): 1124.

[17]

Garrity GM, Bell JA, Lilburn T. Brenner DJ, Krieg NR, Staley JT. Class I. Alphaproteobacteria class. nov. Bergey’s manual of systematic bacteriology: volume two the proteobacteria part C the alpha-, beta-, delta-, and epsilonproteobacteria, 2005, Boston: Springer US, 1-574.

[18]

Hao J, Wang X, Wang H. Investigation of polyhydroxyalkanoates (PHAs) biosynthesis from mixed culture enriched by valerate-dominant hydrolysate. Front Environ Sci Eng, 2016, 11(1): 5.

[19]

Helm J, Wendlandt KD, Rogge G, Kappelmeyer U. Characterizing a stable methane-utilizing mixed culture used in the synthesis of a high-quality biopolymer in an open system. J Appl Microbiol, 2006, 101(2): 387-395.

[20]

Helm J, Wendlandt KD, Jechorek M, Stottmeister U. Potassium deficiency results in accumulation of ultra-high molecular weight poly-beta-hydroxybutyrate in a methane-utilizing mixed culture. J Appl Microbiol, 2008, 105(4): 1054-1061.

[21]

Henry SM, Grbic-Galic D. Influence of endogenous and exogenous electron donors and trichloroethylene oxidation toxicity on trichloroethylene oxidation by methanotrophic cultures from a groundwater aquifer. Appl Environ Microbiol, 1991, 57(1): 236.

[22]

Henrysson T, McCarty PL. Influence of the endogenous storage lipid poly-beta-hydroxybutyrate on the reducing power availability during cometabolism of trichloroethylene and naphthalene by resting methanotrophic mixed cultures. Appl Environ Microbiol, 1993, 5: 1602-1606.

[23]

Ho A, de Roy K, Thas O, De Neve J, Hoefman S, Vandamme P, . The more, the merrier: heterotroph richness stimulates methanotrophic activity. Int Soc Microbial Ecol, 2014, 8(9): 1945-1948.

[24]

Karthikeyan OP, Chidambarampadmavathy K, Nadarajan S, Lee PK, Heimann K. Effect of CH4/O2 ratio on fatty acid profile and polyhydroxybutyrate content in a heterotrophic-methanotrophic consortium. Chemosphere, 2015, 141: 235-242.

[25]

Keenan TM, Tanenbaum SW, Stipanovic AJ, Nakas JP. Production and characterization of poly-β-hydroxyalkanoate copolymers from Burkholderia cepacia utilizing xylose and levulinic acid. Biotechnol Prog, 2004, 20(6): 1697-1704.

[26]

Khatipov E, Miyake M, Miyake J, Asada Y. Accumulation of poly-β-hydroxybutyrate by Rhodobacter sphaeroides on various carbon and nitrogen substrates. FEMS Microbiol Lett, 1998, 162(1): 39-45.

[27]

Koller M, Marsalek L, de Sousa Dias MM, Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. N Biotechnol, 2017, 37: 24-38.

[28]

Laycock B, Halley P, Pratt S, Werker A, Lant P. The chemomechanical properties of microbial polyhydroxyalkanoates. Prog Polym Sci, 2013, 38(3–4): 536-583.

[29]

Laycock B, Arcos-Hernandez MV, Langford A, Pratt S, Werker A, Halley PJ, . Crystallisation and fractionation of selected polyhydroxyalkanoates produced from mixed cultures. N Biotechnol, 2014, 31(4): 345-356.

[30]

Levett I, Birkett G, Davies N, Bell A, Langford A, Laycock B, . Techno-economic assessment of poly-3-hydroxybutyrate (PHB) production from methane—the case for thermophilic bioprocessing. J Environ Chem Eng, 2016, 4: 3724-3733.

[31]

Li SY, Dong CL, Wang SY, Ye HM, Chen G-Q. Microbial production of polyhydroxyalkanoate block copolymer by recombinant Pseudomonas putida. Appl Microbiol Biotechnol, 2011, 90(2): 659-669.

[32]

López JC, Quijano G, Pérez R, Muñoz R. Assessing the influence of CH4 concentration during culture enrichment on the biodegradation kinetics and population structure. J Environ Manage, 2014, 146: 116-123.

[33]

Luangthongkam P (2019) Biosynthesis of Polyhydroxyalkanoates (PHAs) in methane-utilizing mixed cultures. Ph.D. Thesis, The University of Queensland

[34]

Luangthongkam P, Laycock B, Evans P, Lant P, Pratt S. Thermophilic production of poly(3-hydroxybutyrate-co-3-hydrovalerate) by a mixed methane-utilizing culture. N Biotechnol, 2019, 53: 49-56.

[35]

Matsen JB, Yang S, Stein LY, Beck D, Kalyuzhnaya MG. Global molecular analyses of methane metabolism in methanotrophic alphaproteobacterium, Methylosinus trichosporium OB3b. Part I: transcriptomic study. Front Microbiol, 2013, 4: 40.

[36]

Morgan-Sagastume F, Karlsson A, Johansson P, Pratt S, Boon N, Lant P, . Production of polyhydroxyalkanoates in open, mixed cultures from a waste sludge stream containing high levels of soluble organics, nitrogen and phosphorus. Water Res, 2010, 44(18): 5196-5211.

[37]

Myung J, Galega WM, Van Nostrand J, Yuan T, Zhou J, Criddle C. Long-term cultivation of a stable Methylocystis-dominated methanotrophic enrichment enabling tailored production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Biores Technol, 2015, 198: 811-818.

[38]

Myung J, Flanagan JCA, Waymouth RM, Criddle CS. Methane or methanol-oxidation dependent synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by obligate type II methanotrophs. Process Biochem, 2016, 50(5): 561-567.

[39]

Myung J, Flanagan JCA, Waymouth RM, Criddle CS. Expanding the range of polyhydroxyalkanoates synthesized by methanotrophic bacteria through the utilization of omega-hydroxyalkanoate co-substrates. AMB Express, 2017, 7: 118.

[40]

Pfluger AR, Wu WM, Pieja AJ, Wan J, Rostkowski KH, Criddle CS. Selection of Type I and Type II methanotrophic proteobacteria in a fluidized bed reactor under non-sterile conditions. Bioresour Technol, 2011, 102(21): 9919-9926.

[41]

Pieja AJ, Rostkowski KH, Criddle CS. Distribution and selection of poly-3-hydroxybutyrate production capacity in methanotrophic proteobacteria. Microb Ecol, 2011, 62(3): 564-573.

[42]

Pieja AJ, Sundstrom ER, Criddle CS. Poly-3-hydroxybutyrate metabolism in the type II methanotroph Methylocystis parvus OBBP. Appl Environ Microbiol, 2011, 77(17): 6012-6019.

[43]

Pieja AJ, Sundstrom ER, Criddle CS. Cyclic, alternating methane and nitrogen limitation increases PHB production in a methanotrophic community. Biores Technol, 2012, 107: 385-392.

[44]

Qi Q, Rehm BH. Polyhydroxybutyrate biosynthesis in Caulobacter crescentus: molecular characterization of the polyhydroxybutyrate synthase. Microbiology, 2001, 147(Pt 12): 3353-3358.

[45]

Ratcliff WC, Kadam SV, Denison RF. Poly-3-hydroxybutyrate (PHB) supports survival and reproduction in starving rhizobia. FEMS Microbiol Ecol, 2008, 65(3): 391-399.

[46]

Rostkowski KH, Criddle CS, Lepech MD. Cradle-to-gate life cycle assessment for a cradle-to-cradle cycle: biogas-to-bioplastic (and back). Environ Sci Technol, 2012, 46(18): 9822.

[47]

Rostkowski KH, Pfluger AR, Criddle CS. Stoichiometry and kinetics of the PHB-producing type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP. Biores Technol, 2013, 132: 71-77.

[48]

Salehizadeh H, Van Loosdrecht MCM. Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance. Biotechnol Adv, 2004, 22(3): 261-279.

[49]

Shah NN, Hanna ML, Taylor RT. Batch cultivation of Methylosinus trichosporium OB3b: V. Characterization of poly-β-hydroxybutyrate production under methane-dependent growth conditions. Biotechnol Bioeng, 1996, 49(2): 161-171.

[50]

Silva LF, Gomez JGC, Oliveira MS, Torres BB. Propionic acid metabolism and poly-3-hydroxybutyrate-co-3-hydroxyvalerate (P3HB-co-3HV) production by Burkholderia sp. J Biotechnol, 2000, 76(2): 165-174.

[51]

Slater S, Houmiel KL, Tran M, Mitsky TA, Taylor NB, Padgette SR, . Multiple β-ketothiolases mediate poly(β-hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha. J Bacteriol, 1998, 180(8): 1979-1987.

[52]

Solaiman DKY, Swingle BM. Isolation of novel Pseudomonas syringae promoters and functional characterization in polyhydroxyalkanoate-producing pseudomonads. N Biotechnol, 2010, 27(1): 1-9.

[53]

Stein LY, Bringel F, DiSpirito AA, Han S, Jetten MSM, Kalyuzhnaya MG, . Genome sequence of the methanotrophic alphaproteobacterium Methylocystis sp. Strain Rockwell (ATCC 49242). J Bacteriol, 2011, 193(10): 2668-2669.

[54]

Strong P, Laycock B, Mahamud S, Jensen P, Lant P, Tyson G, . The opportunity for high-performance biomaterials from methane. Microorganisms, 2016, 4: 11.

[55]

Sudesh K, Abe H, Doi Y. Synthesis, structure, and properties of polyhydroxyalkanoates- biological polyesters. Prog Polym Sci, 2000, 25: 1503-1555.

[56]

Sundstrom ER, Criddle CS. Optimization of methanotrophic growth and production of poly(3-Hydroxybutyrate) in a high-throughput microbioreactor system. Appl Environ Microbiol, 2015, 81(14): 4767-4773.

[57]

Takeguchi M, Okura I. Role of iron and copper in particulate methane monooxygenase of Methylosinus trichosporium OB3b. Catal Surv Jpn, 2000, 4(1): 51-63.

[58]

Tan GY, Chen CL, Li L, Ge L, Wang L, Razaad I, . Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers, 2014, 6(3): 706-754.

[59]

Thakor NS, Patel MA, Trivedi UB, Patel KC. Production of poly(β-hydroxybutyrate) by Comamonas testosteroni during growth on naphthalene. World J Microbiol Biotechnol, 2003, 19(2): 185-189.

[60]

Tripathi L, Wu LP, Chen J, Chen GQ. Synthesis of diblock copolymer poly-3-hydroxybutyrate-block-poly-3-hydroxyhexanoate [PHB-b-PHHx] by a β-oxidation weakened Pseudomonas putida KT2442. Microb Cell Fact, 2012, 11(1): 44.

[61]

Urakami T, Komagata K. Characterization and identification of methanol-utilizing Hyphomicrobium strains and a comparison with species of Hyphomonas and Rhodomicrobium. J Gen Appl Microbiol, 1987, 33(6): 521-542.

[62]

Wang Y, Liu S. Production of (R)-3-hydroxybutyric acid by Burkholderia cepacia from wood extract hydrolysates. AMB Express, 2014, 4: 28.

[63]

Xin J, Zhang Y, Dong J, Song H, Xia C. An experimental study on molecular weight of poly-3-hydroxybutyrate (PHB) accumulated in Methylosinus trichosporium IMV 3011. Afr J Biotechnol, 2011, 10(36): 7078-7087.

[64]

Yang S, Matsen JB, Konopka M, Green-Saxena A, Clubb J, Sadilek M, . Global molecular analyses of methane metabolism in methanotrophic alphaproteobacterium, Methylosinus trichosporium OB3b. Part II metabolomics and 13C-labeling Study. Front Microbiol, 2013

[65]

Zhang T, Wang X, Zhou J, Zhang Y. Enrichments of methanotrophic–heterotrophic cultures with high poly-β-hydroxybutyrate (PHB) accumulation capacities. J Environ Sci, 2017, 65: 133-143.

[66]

Zhao S, Fan C, Hu X, Chen J, Feng H. The microbial production of polyhydroxybutyrate from methanol. Appl Biochem Biotechnol Part A Enzyme Eng Biotechnol, 1993, 39(1): 191-199.

[67]

Zhu C, Nomura CT, Perrotta JA, Stipanovic AJ, Nakas JP. Production and characterization of poly-3-hydroxybutyrate from biodiesel-glycerol by Burkholderia cepacia ATCC 17759. Biotechnol Prog, 2010, 26(2): 424-430.

[68]

Zuniga C, Morales M, Le Borgne S, Revah S. Production of poly-beta-hydroxybutyrate (PHB) by Methylobacterium organophilum isolated from a methanotrophic consortium in a two-phase partition bioreactor. J Hazard Mater, 2011, 190(1–3): 876-882.

Funding

Australian Research Commission (ARC)(DP150103060)

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/