Metabolic pathway analysis for in silico design of efficient autotrophic production of advanced biofuels

Pornkamol Unrean , Kang Lan Tee , Tuck Seng Wong

Bioresources and Bioprocessing ›› 2019, Vol. 6 ›› Issue (1) : 49

PDF
Bioresources and Bioprocessing ›› 2019, Vol. 6 ›› Issue (1) : 49 DOI: 10.1186/s40643-019-0282-4
Research

Metabolic pathway analysis for in silico design of efficient autotrophic production of advanced biofuels

Author information +
History +
PDF

Abstract

Herein, autotrophic metabolism of Cupriavidus necator H16 growing on CO2, H2 and O2 gas mixture was analyzed by metabolic pathway analysis tools, specifically elementary mode analysis (EMA) and flux balance analysis (FBA). As case studies, recombinant strains of C. necator H16 for the production of short-chain (isobutanol) and long-chain (hexadecanol) alcohols were constructed and examined by a combined tools of EMA and FBA to comprehensively identify the cell’s metabolic flux profiles and its phenotypic spaces for the autotrophic production of recombinant products. The effect of genetic perturbations via gene deletion and overexpression on phenotypic space of the organism was simulated to improve strain performance for efficient bioconversion of CO2 to products at high yield and high productivity. EMA identified multiple gene deletion together with controlling gas input composition to limit phenotypic space and push metabolic fluxes towards high product yield, while FBA identified target gene overexpression to debottleneck rate-limiting fluxes, hence pulling more fluxes to enhance production rate of the products. A combination of gene deletion and overexpression resulted in designed mutant strains with a predicted yield of 0.21–0.42 g/g for isobutanol and 0.20–0.34 g/g for hexadecanol from CO2. The in silico-designed mutants were also predicted to show high productivity of up to 38.4 mmol/cell-h for isobutanol and 9.1 mmol/cell-h for hexadecanol under autotrophic cultivation. The metabolic modeling and analysis presented in this study could potentially serve as a valuable guidance for future metabolic engineering of C. necator H16 for an efficient CO2-to-biofuels conversion.

Keywords

Elementary mode analysis / Flux balance analysis / In silico efficient strain design / Genetic deletion simulation / Genetic overexpression simulation

Cite this article

Download citation ▾
Pornkamol Unrean, Kang Lan Tee, Tuck Seng Wong. Metabolic pathway analysis for in silico design of efficient autotrophic production of advanced biofuels. Bioresources and Bioprocessing, 2019, 6(1): 49 DOI:10.1186/s40643-019-0282-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alagesan S, Minton Nigel P, Malys N. 13C-assisted metabolic flux analysis to investigate heterotrophic and mixotrophic metabolism in Cupriavidus necator H16. Metabolomics, 2018, 14(1): 9.

[2]

Blazeck J, Alper H. Systems metabolic engineering: genome-scale models and beyond. Biotechnol J, 2010, 5(7): 647-659.

[3]

Bruland N, Voß I, Brämer C, Steinbüchel A. Unravelling the C3/C4 carbon metabolism in Ralstonia eutropha H16. J Appl Microbiol, 2010, 109(1): 79-90.

[4]

Chae TU, Choi SY, Kim JW, Ko YS, Lee SY. Recent advances in systems metabolic engineering tools and strategies. Curr Opin Biotechnol, 2017, 47: 67-82.

[5]

Chen JS, Colón B, Dusel B, Ziesack M, Way JC, Torella JP. Production of fatty acids in Ralstonia eutropha H16 by engineering β-oxidation and carbon storage. PeerJ., 2015, 3: e1468.

[6]

Curran KA, Crook NC, Alper HS. Using flux balance analysis to guide microbial metabolic engineering. Methods Mol Biol, 2012, 834: 197-216.

[7]

Fukui T, Chou K, Harada K, Orita I, Nakayama Y, Bamba T, Nakamura S, Fukusaki E. Metabolite profiles of polyhydroxyalkanoate-producing Ralstonia eutropha H16. Metabolomics, 2014, 10(2): 190-202.

[8]

Guo W, Sheng J, Zhao H, Feng X. Metabolic engineering of Saccharomyces cerevisiae to produce 1-hexadecanol from xylose. Microb Cell Fact, 2016, 15: 24.

[9]

Henson MA, Hanly TJ. Dynamic flux balance analysis for synthetic microbial communities. IET Syst Biol, 2014, 8(5): 214-229.

[10]

Ishizaki A, Tanaka K. Batch culture of Alcaligenes eutrophus ATCC 17697T using recycled gas closed circuit culture system. J Ferment Bioeng, 1990, 69: 170-174.

[11]

Ishizaki A, Tanaka K. Production of poly-β-hydroxybutyric acid from carbon dioxide by Alcaligenes eutrophus ATCC 17697T. J Ferment Bioeng, 1991, 70: 254-257.

[12]

Kohlmann Y, Pohlmann A, Otto A, Becher D, Cramm R, Lultte S. Analyses of soluble and membrane proteomes of Ralstonia eutropha H16 reveal major changes in the protein complement in adaptation to lithoautotrophy. J Proteome Res, 2011, 10(6): 2767-2776.

[13]

Lee HM, Jeon BY, Oh MK. Microbial production of ethanol from acetate by engineered Ralstonia eutropha. Biotechnol Bioprocess Eng, 2016, 21(3): 402-407.

[14]

Li H, Opgenorth PH, Wernick DG, Rogers S, Wu TY, Higashide W, Malati P, Huo YX, Cho KM, Liao JC. Integrated electromicrobial conversion of CO2 to higher alcohols. Science, 2012, 335(6076): 1596.

[15]

Lopar M, Špoljarić IV, Cepanec N, Koller M, Braunegg G, Horvat P. Study of metabolic network of Cupriavidus necator DSM 545 growing on glycerol by applying elementary flux modes and yield space analysis. J Ind Microbiol Biotechnol., 2014, 41(6): 913-930.

[16]

Lu J, Brigham CJ, Gai CS, Sinskey AJ. Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha. Appl Microbiol Biotechnol, 2012, 96(1): 283-297.

[17]

Marella ER, Holkenbrink C, Siewers V, Borodina I. Engineering microbial fatty acid metabolism for biofuels and biochemicals. Curr Opin Biotechnol., 2018, 50: 39-46.

[18]

Orth JD, Thiele I, Palsson . What is flux balance analysis?. Nat Biotechnol, 2010, 28(3): 245-248.

[19]

Park JM, Kim TY, Lee SY. Genome-scale reconstruction and in silico analysis of the Ralstonia eutropha H16 for polyhydroxyalkanoate synthesis, lithoautotrophic growth, and 2-methyl citric acid production. BMC Syst Biol, 2011, 5: 101.

[20]

Pohlmann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, Cramm R. Genome sequence of the bioplastic-producing knallgas bacterium Ralstonia eutropha H16. Nat Biotech., 2006, 24(10): 1257-1262.

[21]

PsarrasP Comello S, Bains P, Charoensawadpong P, Reichelstein S, Wilcox J. Carbon capture and utilization in the industrial sector. Environ Sci Technol, 2017, 51(19): 11440-11449.

[22]

Raberg M, Voigt B, Hecker M, Steinbüchel A. A closer look on the polyhydroxybutyrate− (PHB−) negative phenotype of Ralstonia eutropha PHB-4. PLoS ONE, 2014, 9(5): e95907.

[23]

Reutz I, Schobert P, Bowien B. Effect of phosphoglycerate mutase deficiency on heterotrophic and autotrophic carbon metabolism of Alcaligenes eutrophus. J Bacteriol, 1982, 151(1): 8-14.

[24]

Schäferjohann J, Yoo JG, Kusian B, Bowien B. Thecbboperons of the facultative chemoautotroph Alcaligenes eutrophus encode phosphoglycolate phosphatase. J Bacteriol, 1993, 175(22): 7329-7340.

[25]

Schuster S, Fell D, Dandekar T. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol, 2000, 18: 326-332.

[26]

Schwartz E, Henne A, Cramm R, Eitinger T, Friedrich B, Gottschalk G. Complete nucleotide sequence of pHG1: a Ralstonia eutropha H16 megaplasmid encoding key enzymes of H2-based lithoautotrophy and anaerobiosis. J Mol Biol, 2003, 332(2): 369-383.

[27]

Schwartz E, Voigt B, Zühlke D, Pohlmann A, Lenz O, Albrecht D. A proteomic view of the facultatively chemolithoautotrophic lifestyle of Ralstonia eutropha H16. Proteomics, 2009, 9(22): 5132-5142.

[28]

Singh A, Cher Soh K, Hatzimanikatis V, Gill RT. Manipulating redox and ATP balancing for improved production of succinate in E. coli. Metab Eng, 2011, 13(1): 76-81.

[29]

Tee KL, Grinham J, Othusitse AM, González-Villanueva M, Johnson AO, Wong TS. An Efficient Transformation method for the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Biotechnol J, 2017, 12: 11.

[30]

Ternon C, Groussean E, Gunther J, Gorret N, Guillouet S, Sinskey J, Aceves-Lara A, Roux G. Dynamic model for isopropanol production by Cupriavidus necator. IFAC Proc Vol, 2014, 47(3): 4388-4393.

[31]

Thakur IS, Kumar M, Varjani SJ, Wu Y, Gnansounou E, Ravindran S. Sequestration and utilization of carbon dioxide by chemical and biological methods for biofuels and biomaterials by chemoautotrophs: opportunities and challenges. Bioresour Technol, 2018, 256: 478-490.

[32]

Tokuyama K, Ohno S, Yoshikawa K, Hirasawa T, Tanaka S, Furusawa C, Shimizu H. Increased 3-hydroxypropionic acid production from glycerol, by modification of central metabolism in Escherichia coli. Microb Cell Fact, 2014, 13: 64.

[33]

Yu J. Fixation of carbon dioxide by a hydrogen-oxidizing bacterium for value-added products. World J Microbiol Biotechnol, 2018, 34(7): 89.

[34]

Zhao Q, Yu S, Shi J. Applications of elementary mode analysis in biological network and pathway analysis. Chin J Biotechnol, 2013, 29(6): 701-715.

[35]

Zhou L, Zuo ZR, Chen XZ, Niu DD, Tian KM, Prior BA, Shen W, Shi GY, Singh S, Wang ZX. Evaluation of genetic manipulation strategies on d-lactate production by Escherichia coli. Curr Microbiol, 2011, 62(3): 981-989.

Funding

Royal Society(Royal Society (IES\R3\170129))

AI Summary AI Mindmap
PDF

191

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/