Enzyme-catalyzed C–F bond formation and cleavage

Wei Tong , Qun Huang , Min Li , Jian-bo Wang

Bioresources and Bioprocessing ›› 2019, Vol. 6 ›› Issue (1) : 46

PDF
Bioresources and Bioprocessing ›› 2019, Vol. 6 ›› Issue (1) : 46 DOI: 10.1186/s40643-019-0280-6
Review

Enzyme-catalyzed C–F bond formation and cleavage

Author information +
History +
PDF

Abstract

Organofluorines are widely used in a variety of applications, ranging from pharmaceuticals to pesticides and advanced materials. The widespread use of organofluorines also leads to its accumulation in the environment, and two major questions arise: how to synthesize and how to degrade this type of compound effectively? In contrast to a considerable number of easy-access chemical methods, milder and more effective enzymatic methods remain to be developed. In this review, we present recent progress on enzyme-catalyzed C–F bond formation and cleavage, focused on describing C–F bond formation enabled by fluorinase and C–F bond cleavage catalyzed by oxidase, reductase, deaminase, and dehalogenase.

Keywords

Organofluorines / C–F bonds / Enzyme-catalyzed / Degradation / Formation

Cite this article

Download citation ▾
Wei Tong, Qun Huang, Min Li, Jian-bo Wang. Enzyme-catalyzed C–F bond formation and cleavage. Bioresources and Bioprocessing, 2019, 6(1): 46 DOI:10.1186/s40643-019-0280-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bartholomé A, Janso JE, O’Hagan D. Fluorometabolite biosynthesis: isotopically labelled glycerol incorporations into the antibiotic nucleocidin in Streptomyces calvus. Org Biomol Chem, 2016, 15(1): 61-64.

[2]

Berger R, Resnati G, Metrangolo P, Weber E, Hulliger J. Organic fluorine compounds: a great opportunity for enhanced materials properties. Chem Soc Rev, 2011, 40(7): 3496-3508.

[3]

Carvalho MF, Oliveira RS. Natural production of fluorinated compounds and biotechnological prospects of the fluorinase enzyme. Crit Rev Biotechnol, 2017, 37(7): 880-897.

[4]

Chan PW, Yakunin AF, Edwards EA, Pai EF. Mapping the reaction coordinates of enzymatic defluorination. J Am Chem Soc, 2011, 133(19): 7461-7468.

[5]

Cuetos A, García-Ramos M, Fischereder EM, Díaz-Rodríguez A, Grogan G, Gotor V, Lavandera I. Catalytic promiscuity of transaminases: preparation of enantioenriched β-fluoroamines by formal tandem hydrodefluorination/deamination. Angew Chem Int Ed, 2016, 128(9): 3196-3199.

[6]

Dall’Angelo S, Bandaranayaka N, Windhorst AD, Vugts DJ, van der Born D, Onega M, O’Hagan D. Tumour imaging by positron emission tomography using fluorinase generated 5-[18F] fluoro-5-deoxyribose as a novel tracer. Nucl Med Biol, 2013, 40(4): 464-470.

[7]

Deng H, O’Hagan D, Schaffrath C. Fluorometabolite biosynthesis and the fluorinase from Streptomyces cattleya. Natural product reports, 2004, 21(6): 773-784.

[8]

Deng H, Cobb SL, McEwan AR, McGlinchey RP, Naismith JH, O’Hagan D, Spencer JB. The fluorinase from Streptomyces cattleya is also a chlorinase. Angew Chem Int Ed, 2006, 45(5): 759-762.

[9]

Deng H, Ma L, Bandaranayaka N, Qin Z, Mann G, Kyeremeh K, O’Hagan D. Identification of fluorinases from Streptomyces sp MA37, Norcardia brasiliensis, and Actinoplanes sp N902-109 by genome Mining. ChemBioChem, 2014, 15(3): 364-368.

[10]

Dillert R, Bahnemann D, Hidaka H. Light-induced degradation of perfluorocarboxylic acids in the presence of titanium dioxide. Chemosphere, 2007, 67(4): 785-792.

[11]

Dong C, Huang F, Deng H, Schaffrath C, Spencer JB, O’Hagan D, Naismith JH. Crystal structure and mechanism of a bacterial fluorinating enzyme. Nature, 2004, 427(6974): 561.

[12]

Donnelly C, Murphy CD. Purification and properties of fluoroacetate dehalogenase from Pseudomonas fluorescens DSM 8341. Biotech Lett, 2009, 31: 245-250.

[13]

Douvris C, Ozerov OV. Hydrodefluorination of perfluoroalkyl groups using silylium-carborane catalysts. Science, 2008, 321(5893): 1188-1190.

[14]

Feng X, Al Maharik N, Bartholomé A, Janso JE, O’Hagan D. Incorporation of [2H1]-(1R, 2R)-and [2H1]-(1S, 2R)-glycerols into the antibiotic nucleocidin in Streptomyces calvus. Org Biomol Chem, 2017, 15(38): 8006-8008.

[15]

Feng X, Bello D, Lowe PT, Clark J, O’Hagan D. Two 3′-O-β-glucosylated nucleoside fluorometabolites related to nucleocidin in Streptomyces calvus. Chemical Science, 2019, 10(41): 9501-9505.

[16]

Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. Applications of fluorine in medicinal chemistry. J Med Chem, 2015, 58(21): 8315-8359.

[17]

Goldman P. Enzymatic cleavage of carbon–fluorine bond in fluoroacetate. J Biol Chem, 1965, 240: 3434-3438.

[18]

Goldman P. The carbon–fluorine bond in compounds of biological interest. Science, 1969, 164(3884): 1123-1130.

[19]

Hagmann WK. The many roles for fluorine in medicinal chemistry. J Med Chem, 2008, 51(15): 4359-4369.

[20]

HimáTong M. Fluoroacetate biosynthesis from the marine-derived bacterium Streptomyces xinghaiensis NRRL B-24674. Org Biomol Chem, 2014, 12(27): 4828-4831.

[21]

Houde M, Martin JW, Letcher RJ, Solomon KR, Muir DC. Biological monitoring of polyfluoroalkyl substances: a review. Environ Sci Technol, 2006, 40(11): 3463-3473.

[22]

Jenkins ID, Verheyden JP, Moffatt JG. 4′-Substituted nucleosides. 2. Synthesis of the nucleoside antibiotic nucleocidin. J Am Chem Soc, 1976, 98(11): 3346-3357.

[23]

Kawasaki H, Miyoshi K, Tonomura K. Purification, crystallization and properties of haloacetate halidohydro-lase from Pseudomonas species. Agric Biol Chem, 1981, 45: 543-544.

[24]

Kim BR, Suidan MT, Wallington TJ, Du X. Biodegradability of trifluoroacetic acid. Environ Eng Sci, 2000, 17(6): 337-342.

[25]

Kim TH, Mehrabi P, Ren Z, Sljoka A, Ing C, Bezginov A, Ye L, Pomès R, Prosser RS, Pai EF. The role of dimer asymmetry and protomer dynamics in enzyme catalysis. Science, 2017, 355(6322): eaag2355.

[26]

Kurihara T, Yamauchi T, Ichiyama S. Purification, characterization, and gene cloning of a novel fluoroacetate dehalogenase from Burkholderia sp FA1. J Mol Catal B Enzym, 2003, 23: 347-355.

[27]

Lemal DM. Perspective on fluorocarbon chemistry. J Organ Chem, 2004, 69(1): 1-11.

[28]

Li J, Griffith WP, Davis I, Shin I, Wang J, Li F, Liu A. Cleavage of a carbon–fluorine bond by an engineered cysteine dioxygenase. Nat Chem Biol, 2018, 14(9): 853.

[29]

Lin X, Rong F, Fu D, Yuan C. Enhanced photocatalytic activity of fluorine doped TiO2 by loaded with Ag for degradation of organic pollutants. Powder Technol, 2012, 219: 173-178.

[30]

Liu J, Avendaño SM. Microbial degradation of polyfluoroalkyl chemicals in the environment: a review. Environ Int, 2013, 61: 98-114.

[31]

Liu JQ, Kurihara T, Ichiyama S. Reaction mech-anism of fluoroacetate dehalogenase from Moraxella sp. J Biol Chem, 1998, 273: 30897-30902.

[32]

Lowe PT, Dall’Angelo S, Mulder-Krieger T, IJzerman AP, Zanda M, O’Hagan D. A new class of fluorinated A2A adenosine receptor agonist with application to last-step enzymatic [18F] fluorination for PET imaging. ChemBioChem, 2017, 18(21): 2156-2164.

[33]

Marais JSC (1943) The isolation of the toxic principle” potassium cymonate” from” Gifblaar” Dichapetalum cymosum (Hook) Engl

[34]

Marais JSC (1944) Monofluoroacetic acid, the toxic principle of “gifblaar”, Dichapetalum cymosum (Hook) Engl

[35]

Mehrabi P, Di Pietrantonio C, Kim TH, Sljoka A, Taverner K, Ing C, Prosser RS. Substrate-based allosteric regulation of a homodimeric enzyme. J Am Chem Soc, 2019, 141(29): 11540-11556.

[36]

Müller K, Faeh C, Diederich F. Fluorine in pharmaceuticals: looking beyond intuition. Science, 2007, 317(5846): 1881-1886.

[37]

Murphy CD. Microbial degradation of fluorinated drugs: biochemical pathways, impacts on the environment and potential applications. Appl Microbiol Biotechnol, 2016, 100(6): 2617-2627.

[38]

Nashiru O, Zechel DL, Stoll D, Mohammadzadeh T, Warren RAJ, Withers SG. β-Mannosynthase: synthesis of β-mannosides with a mutant β-mannosidase. Angew Chem Int Ed, 2001, 40(2): 417-420.

[39]

Natarajan R, Azerad R, Badet B, Copin E. Microbial cleavage of C–F bond. J Fluorine Chem, 2005, 126(4): 424-435.

[40]

Nenajdenko VG, Muzalevskiy VM, Shastin AV. Polyfluorinated ethanes as versatile fluorinated C2-building blocks for organic synthesis. Chem Rev, 2015, 115(2): 973-1050.

[41]

Ni C, Hu J. The unique fluorine effects in organic reactions: recent facts and insights into fluoroalkylations. Chem Soc Rev, 2016, 45(20): 5441-5454.

[42]

O’Hagan D. Understanding organofluorine chemistry. An introduction to the C–F bond. Chem Soc Rev, 2008, 37(2): 308-319.

[43]

O’Hagan D, Deng H. Enzymatic fluorination and biotechnological developments of the fluorinase. Chem Rev, 2014, 115(2): 634-649.

[44]

O’Hagan D, Schaffrath C, Cobb SL, Hamilton JT, Murphy CD. Biochemistry: biosynthesis of an organofluorine molecule. Nature, 2002, 416(6878): 279.

[45]

Phelps ME. PET: molecular imaging and its biological applications, 2004, Berlin: Springer Science & Business Media

[46]

Purser S, Moore PR, Swallow S, Gouverneur V. Fluorine in medicinal chemistry. Chem Soc Rev, 2008, 37(2): 320-330.

[47]

Rotander A, Kärrman A, van Bavel B, Polder A, Rigét F, Auðunsson GA, Dam M. Increasing levels of long-chain perfluorocarboxylic acids (PFCAs) in Arctic and North Atlantic marine mammals, 1984-2009. Chemosphere, 2012, 86(3): 278-285.

[48]

Sanada M, Miyano T, Iwadare S, WillIamson JM, Arison BH, Smith JL, Inamine E. Biosynthesis of fluorothreonine and fluoroacetic. J Antibiot, 1986, 39(2): 259-265.

[49]

Schaffrath C, Deng H, O’Hagan D. Isolation and characterisation of 5′-fluorodeoxyadenosine synthase, a fluorination enzyme from Streptomyces cattleya. FEBS Lett, 2003, 547(1–3): 111-114.

[50]

Shah P, Westwell AD. The role of fluorine in medicinal chemistry. J Enzyme Inhib Med Chem, 2007, 22(5): 527-540.

[51]

Simmons CR, Liu Q, Huang Q, Hao Q, Begley TP, Karplus PA, Stipanuk MH. Crystal structure of mammalian cysteine dioxygenase a novel mononuclear iron center for cysteine thiol oxidation. J Biol Chem, 2006, 281(27): 18723-18733.

[52]

Spooner MJ, Li H, Marques I, Costa PM, Wu X, Howe EN, Félix V. Fluorinated synthetic anion carriers: experimental and computational insights into transmembrane chloride transport. Chem Sci, 2019, 10(7): 1976-1985.

[53]

Sulbaek Andersen MP, Nielsen OJ, Wallington TJ, Hurley MD, DeMore WB. Atmospheric chemistry of CF3OCF2CF2H and CF3OC(CF3)2H: reaction with Cl atoms and OH radicals, degradation mechanism, global warming potentials, and empirical relationship between k(OH) and k(Cl) for organic compounds. J Phys Chem A, 2005, 109(17): 3926-3934.

[54]

Sun H, Yeo WL, Lim YH, Chew X, Smith DJ, Xue B, Ang EL. Directed evolution of a-fluorinase for improved fluorination efficiency with a non-native substrate. Angew Chem Int Ed, 2016, 128(46): 14489-14492.

[55]

Sun H, Zhao H, Ang EL. A coupled chlorinase-fluorinase system with a high efficiency of trans-halogenation and a shared substrate tolerance. Chem Commun, 2018, 54(68): 9458-9461.

[56]

Thompson S, McMahon SA, Naismith JH, O’Hagan D. Exploration of a potential difluoromethyl-nucleoside substrate with the fluorinase enzyme. Bioorg Chem, 2016, 64: 37-41.

[57]

Tiedt O, Mergelsberg M, Boll K, Müller M, Adrian L, Jehmlich N, Boll M. ATP-dependent C–F bond cleavage allows the complete degradation of 4-fluoroaromatics without oxygen. MBio, 2016, 7(4): e00990-16.

[58]

Walker JRL, Lien BC. Metabolism of fluoroacetate by a soil Pseudomonas sp. and Fusarium solani. Soil Biol Biochem, 1981, 13: 231-235.

[59]

Wang Y, Deng Z, Qu X. Characterization of a SAM-dependent fluorinase from a latent biosynthetic pathway for fluoroacetate and 4-fluorothreonine formation in Nocardia brasiliensis. F1000Research, 2014, 3: 61.

[60]

Wang XS, Liang J, Li L, Lin ZJ, Bag PP, Gao SY, Cao R. An anion metal–organic framework with Lewis basic sites-rich toward charge-exclusive cationic dyes separation and size-selective catalytic reaction. Inorg Chem, 2016, 55(5): 2641-2649.

[61]

Wang JB, Ilie A, Yuan S, Reetz MT. Investigating substrate scope and enantioselectivity of a defluorinase by a stereochemical probe. J Am Chem Soc, 2017, 139(32): 11241-11247.

[62]

Wang Y, Davis I, Shin I, Wherritt DJ, Griffith WP, Dornevil K, Liu A. Biocatalytic carbon-hydrogen and carbon–fluorine bond cleavage through hydroxylation promoted by a histidyl-ligated heme enzyme. ACS Catal, 2019, 9(6): 4764-4776.

[63]

Whittaker JW. Free radical catalysis by galactose oxidase. Chem Rev, 2003, 103(6): 2347-2364.

[64]

Winkler M, Domarkas J, Schweiger LF, O’Hagan D. Fluorinase-coupled base swaps: synthesis of [18F]-5′-deoxy-5′-fluorouridines. Angew Chem Int Ed, 2008, 47(52): 10141-10143.

[65]

Yeo WL, Chew X, Smith DJ, Chan KP, Sun H, Zhao H, Ang EL. Probing the molecular determinants of fluorinase specificity. Chem Commun, 2017, 53(17): 2559-2562.

[66]

Zechel DL, Reid SP, Nashiru O, Mayer C, Stoll D, Jakeman DL, Withers SG. Enzymatic synthesis of carbon–fluorine bonds. J Am Chem Soc, 2001, 123(18): 4350-4351.

[67]

Zechel DL, Reid SP, Stoll D, Nashiru O, Warren RAJ, Withers SG. Mechanism, mutagenesis, and chemical rescue of a β-mannosidase from Cellulomonas fimi. Biochemistry, 2003, 42(23): 7195-7204.

[68]

Zhang Q, Dall’Angelo S, Fleming IN, Schweiger LF, Zanda M, O’Hagan D. Last-step enzymatic fluorination of cysteine-tethered RGD peptides using modified Barbas linkers. Chemistry-A European Journal, 2016, 22(31): 10998-11004.

[69]

Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Liu H. Next generation of fluorine-containing pharmaceuticals, compounds currently in phase II–III clinical trials of major pharmaceutical companies: new structural trends and therapeutic areas. Chem Rev, 2016, 116(2): 422-518.

[70]

Zhu X, Robinson DA, McEwan AR, O’Hagan D, Naismith JH. Mechanism of enzymatic fluorination in Streptomyces cattleya. J Am Chem Soc, 2007, 129(47): 14597-14604.

[71]

Zhu XM, Hackl S, Thaker MN, Kalan L, Weber C, Urgast DS, Yim G. Biosynthesis of the fluorinated natural product nucleocidin in Streptomyces calvus is dependent on the bldA-specified Leu-tRNAUUA molecule. ChemBioChem, 2015, 16(17): 2498-2506.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/