PDF
Abstract
In the last two decades, studies on plant biomass-degrading fungi have remarkably increased to understand and reveal the underlying molecular mechanisms responsible for their life cycle and wood-decaying abilities. Most of the plant biomass-degrading fungi reported till date belong to basidiomycota or ascomycota phyla. Thus, very few studies were conducted on fungi belonging to other divisions. Recent sequencing studies have revealed complete genomic sequences of various fungi. Our present study is focused on understanding the plant biomass-degrading potentials, by retrieving genome-wide annotations of 56 published fungi belonging to Glomeromycota, Mucoromycota, Zoopagomycota, Blastocladiomycota, Chytridiomycota, Neocallimastigomycota, Microsporidia and Cryptomycota from JGI-MycoCosm repository. We have compared and analyzed the proteomic annotations, especially CAZy, KOG, KEGG and SM clusters by separating the proteomic annotations into lignin-, cellulose-, hemicellulose-, pectin-degrading enzymes and also highlighted the KEGG, KOG molecular mechanisms responsible for the metabolism of carbohydrates (lignocellulolytic pathways of fungi), complex organic pollutants, xenobiotic compounds, biosynthesis of secondary metabolites. However, we strongly agree that studying genome-wide distributions of fungal CAZyme does not completely corresponds to its biomass-degrading ability. Thus, our present study can be used as preliminary materials for selecting ideal fungal candidate for the degradation and conversion of plant biomass components, especially carbohydrates to bioethanol and other commercially valuable products.
Keywords
Plant biomass
/
Lignocellulose
/
Bioremediation
/
Carbohydrate active enzymes (CAZymes)
/
Eukaryotic orthologous groups (KOG)
/
KEGG pathways
Cite this article
Download citation ▾
Ayyappa Kumar Sista Kameshwar, Wensheng Qin.
Systematic review of publicly available non-Dikarya fungal proteomes for understanding their plant biomass-degrading and bioremediation potentials.
Bioresources and Bioprocessing, 2019, 6(1): 30 DOI:10.1186/s40643-019-0264-6
| [1] |
Ahrendt SR, Quandt CA, Ciobanu D, Clum A, Salamov A, Andreopoulos B, Cheng J-F, Woyke T, Pelin A, Henrissat B. Leveraging single-cell genomics to expand the fungal tree of life. Nat Microbiol, 2018, 3: 1417.
|
| [2] |
Akiyoshi DE, Morrison HG, Lei S, Feng X, Zhang Q, Corradi N, Mayanja H, Tumwine JK, Keeling PJ, Weiss LM. Genomic survey of the non-cultivatable opportunistic human pathogen, Enterocytozoon bieneusi. PLoS pathogens, 2009, 5: e1000261.
|
| [3] |
Alexopoulous C, Mims C, Blackwell M. Phylum chytridiomycota introductory mycology, 1996, New York: Wiley, 86-126.
|
| [4] |
Baldauf SL, Palmer JD. Animals and fungi are each other’s closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci, 1993, 90: 11558-11562.
|
| [5] |
Barr DJ. Evolution and kingdoms of organisms from the perspective of a mycologist. Mycologia, 1992, 84: 1-11.
|
| [6] |
Bartnicki-Garcia S. Cell wall composition and other biochemical markers in fungal phylogeny, 1970, London: Academic Press.
|
| [7] |
Beeson WT, Vu VV, Span EA, Phillips CM, Marletta MA. Cellulose degradation by polysaccharide monooxygenases. Annu Rev Biochem, 2015, 84: 923-946.
|
| [8] |
Berbee M, Taylor J. Systematics and evolution, 2001, Berlin: Springer, 229-245.
|
| [9] |
Berbee ML, Taylor JW. Fungal molecular evolution: gene trees and geologic time. Systematics and evolution, 2001, Berlin: Springer, 229-245.
|
| [10] |
Bruns T. Evolutionary biology: a kingdom revised. Nature, 2006, 443: 758.
|
| [11] |
Cameron MD, Aust SD. Cellobiose dehydrogenase–an extracellular fungal flavocytochrome. Enzyme Microbial Technol, 2001, 28: 129-138.
|
| [12] |
Chang Y, Wang S, Sekimoto S, Aerts AL, Choi C, Clum A, LaButti KM, Lindquist EA, Yee Ngan C, Ohm RA. Phylogenomic analyses indicate that early fungi evolved digesting cell walls of algal ancestors of land plants. Genome Biol Evol, 2015, 7: 1590-1601.
|
| [13] |
Chang Y, Desirò A, Na H, Sandor L, Lipzen A, Clum A, Barry K, Grigoriev IV, Martin FM, Stajich JE. Phylogenomics of Endogonaceae and evolution of mycorrhizas within Mucoromycota. New Phytol, 2019, 222: 511-525.
|
| [14] |
Chen EC, Morin E, Beaudet D, Noel J, Yildirir G, Ndikumana S, Charron P, St-Onge C, Giorgi J, Krüger M. High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. New Phytologist, 2018, 220(4): 1161-1171.
|
| [15] |
Cornman RS, Chen YP, Schatz MC, Street C, Zhao Y, Desany B, Egholm M, Hutchison S, Pettis JS, Lipkin WI. Genomic analyses of the microsporidian Nosema ceranae, an emergent pathogen of honey bees. PLoS Pathog, 2009, 5: e1000466.
|
| [16] |
Corradi N, Selman M. Latest progress in microsporidian genome research. J Eukaryot Microbiol, 2013, 60: 309-312.
|
| [17] |
Corradi N, Pombert J-F, Farinelli L, Didier ES, Keeling PJ. The complete sequence of the smallest known nuclear genome from the microsporidian Encephalitozoon intestinalis. Nat Commun, 2010, 1: 77.
|
| [18] |
Corrochano LM, Kuo A, Marcet-Houben M, Polaino S, Salamov A, Villalobos-Escobedo JM, Grimwood J, Álvarez MI, Avalos J, Bauer D. Expansion of signal transduction pathways in fungi by extensive genome duplication. Curr Biol, 2016, 26: 1577-1584.
|
| [19] |
Cuomo CA, Desjardins CA, Bakowski MA, Goldberg J, Ma AT, Becnel JJ, Didier ES, Fan L, Heiman DI, Levin JZ. Microsporidian genome analysis reveals evolutionary strategies for obligate intracellular growth. Genome Res, 2012, 22: 2478-2488.
|
| [20] |
Diyarova DK. The role of wood-decaying fungi in the carbon cycle of forest ecosystems and the main ecological factors, 2016, ESJ: Eur Sci J, 12.
|
| [21] |
Douaiher MN, Nowak E, Durand R, Halama P, Reignault P. Correlative analysis of Mycosphaerella graminicola pathogenicity and cell wall-degrading enzymes produced in vitro: the importance of xylanase and polygalacturonase. Plant Pathol, 2007, 56: 79-86.
|
| [22] |
Ferrari S, Galletti R, Pontiggia D, Manfredini C, Lionetti V, Bellincampi D, Cervone F, De Lorenzo G. Transgenic expression of a fungal endo-polygalacturonase increases plant resistance to pathogens and reduces auxin sensitivity. Plant Physiol, 2008, 146: 669-681.
|
| [23] |
Ferreira L, Hazlewood GP, Barker PJ, Gilbert HJ. The cellodextrinase from Pseudomonas fluorescens subsp. cellulosa consists of multiple functional domains. Biochem J, 1991, 279: 793-799.
|
| [24] |
Ganju RK, Vithayathil PJ, Murthy S. Purification and characterization of two xylanases from Chaetomium thermophile var. coprophile. Can J Microbiol, 1989, 35: 836-842.
|
| [25] |
Garajova S, Mathieu Y, Beccia MR, Bennati-Granier C, Biaso F, Fanuel M, Ropartz D, Guigliarelli B, Record E, Rogniaux H. Single-domain flavoenzymes trigger lytic polysaccharide monooxygenases for oxidative degradation of cellulose. Sci Rep, 2016, 6: 28276.
|
| [26] |
Grigoriev IV, Nordberg H, Shabalov I, Aerts A, Cantor M, Goodstein D, Kuo A, Minovitsky S, Nikitin R, Ohm RA. The genome portal of the department of energy joint genome institute. Nucleic Acids Res, 2011, 40: D26-D32.
|
| [27] |
Haitjema CH, Gilmore SP, Henske JK, Solomon KV, de Groot R, Kuo A, Mondo SJ, Salamov AA, LaButti K, Zhao Z. A parts list for fungal cellulosomes revealed by comparative genomics. Nat Microbiol, 2017, 2: 17087.
|
| [28] |
Harris PV, Xu F, Kreel NE, Kang C, Fukuyama S. New enzyme insights drive advances in commercial ethanol production. Curr Opin Chem Biol, 2014, 19: 162-170.
|
| [29] |
Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB. Molecular evidence for the early colonization of land by fungi and plants. Science, 2001, 293: 1129-1133.
|
| [30] |
Hedges SB, Kumar S. The timetree of life OUP, 2009, Oxford: Oxford University.
|
| [31] |
Hedges SB, Marin J, Suleski M, Paymer M, Kumar S. Tree of life reveals clock-like speciation and diversification. Mol Biol Evol, 2015, 32: 835-845.
|
| [32] |
Hemsworth GR, Johnston EM, Davies GJ, Walton PH. Lytic polysaccharide monooxygenases in biomass conversion. Trends Biotechnol, 2015, 33: 747-761.
|
| [33] |
Henriksson G, Ander P, Pettersson B, Pettersson G. Cellobiose dehydrogenase (cellobiose oxidase) from Phanerochaete chrysosporium as a wood-degrading enzyme. Studies on cellulose, xylan and synthetic lignin. Appl Microbiol Biotechnol, 1995, 42: 790-796.
|
| [34] |
Henriksson G, Zhang L, Li J, Ljungquist P, Reitberger T, Pettersson G, Johansson G. Is cellobiose dehydrogenase from Phanerochaete chrysosporium a lignin degrading enzyme?. Biochem Biophys Acta, 2000, 1480: 83-91.
|
| [35] |
Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R. A higher-level phylogenetic classification of the Fungi. Mycol Res, 2007, 111: 509-547.
|
| [36] |
Hoffman GL. Parasites of North American freshwater fishes, 1999, Ithaca: Cornell University Press.
|
| [37] |
Honda Y, Kitaoka M. A family 8 glycoside hydrolase from Bacillus halodurans C-125 (BH2105) is a reducing end xylose-releasing exo-oligoxylanase. J Biol Chem, 2004, 279: 55097-55103.
|
| [38] |
Huang L, Forsberg CW. Isolation of a cellodextrinase from Bacteroides succinogenes. Appl Environ Microbiol, 1987, 53: 1034-1041.
|
| [39] |
James TY, Porter D, Leander CA, Vilgalys R, Longcore JE. Molecular phylogenetics of the Chytridiomycota supports the utility of ultrastructural data in chytrid systematics. Can J Bot, 2000, 78: 336-350.
|
| [40] |
James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature, 2006, 443: 818.
|
| [41] |
James TY, Letcher PM, Longcore JE, Mozley-Standridge SE, Porter D, Powell MJ, Griffith GW, Vilgalys R. A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia, 2006, 98: 860-871.
|
| [42] |
James TY, Pelin A, Bonen L, Ahrendt S, Sain D, Corradi N, Stajich JE. Shared signatures of parasitism and phylogenomics unite cryptomycota and microsporidia. Curr Biol, 2013, 23: 1548-1553.
|
| [43] |
Johansen KS. Discovery and industrial applications of lytic polysaccharide mono-oxygenases. Biochem Soc Trans, 2016, 44: 143-149.
|
| [44] |
Juturu V, Wu JC. Microbial exo-xylanases: a mini review. Appl Biochem Biotechnol, 2014, 174: 81-92.
|
| [45] |
Kameshwar A, Qin W. Recent developments in using advanced sequencing technologies for the genomic studies of lignin and cellulose degrading microorganisms. Int J Biol Sci, 2016, 12: 156-171.
|
| [46] |
Kameshwar AKS, Qin W. Lignin degrading fungal enzymes production of biofuels and chemicals from lignin, 2016, Berlin: Springer, 81-130.
|
| [47] |
Kameshwar AKS, Qin W. Gene expression metadata analysis reveals molecular mechanisms employed by Phanerochaete chrysosporium during lignin degradation and detoxification of plant extractives. Curr Genet, 2017, 63: 877-894.
|
| [48] |
Kameshwar AKS, Qin W. Genome wide analysis reveals the extrinsic cellulolytic and biohydrogen generating abilities of neocallimastigomycota fungi. J Genomics, 2018, 6: 74.
|
| [49] |
Karol KG, McCourt RM, Cimino MT, Delwiche CF. The closest living relatives of land plants. Science, 2001, 294: 2351-2353.
|
| [50] |
Kelly G. Inulin-type prebiotics—a review: part 1. Altern Med Rev, 2008, 13: 4.
|
| [51] |
Kendrick B. The fifth kingdom 3rd. City name The USA, 2000, Bemidji: Focus Publishing.
|
| [52] |
Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC, Wolfe KH, Fedorova ND. SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol, 2010, 47: 736-741.
|
| [53] |
Kikot GE, Hours RA, Alconada TM. Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum: a review. J Basic Microbiol, 2009, 49: 231-241.
|
| [54] |
King BC, Waxman KD, Nenni NV, Walker LP, Bergstrom GC, Gibson DM. Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi. Biotechnol Biofuels, 2011, 4: 4.
|
| [55] |
Kracher D, Scheiblbrandner S, Felice AK, Breslmayr E, Preims M, Ludwicka K, Haltrich D, Eijsink VG, Ludwig R. Extracellular electron transfer systems fuel cellulose oxidative degradation. Science, 2016, 352: 1098-1101.
|
| [56] |
Kraulis PJ, Clore GM, Nilges M, Jones TA, Pettersson G, Knowles J, Gronenborn AM. Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry, 1989, 28: 7241-7257.
|
| [57] |
Krishna MP, Mohan M. Litter decomposition in forest ecosystems: a review. Energy Ecol Environ, 2017, 2(4): 236-249.
|
| [58] |
Kubata BK, Suzuki T, Horitsu H, Kawai K, Takamizawa K. Purification and characterization of Aeromonas caviae ME-1 xylanase V, which produces exclusively xylobiose from xylan. Appl Environ Microbiol, 1994, 60: 531-535.
|
| [59] |
Lara E, Moreira D, López-García P. The environmental clade LKM11 and Rozella form the deepest branching clade of fungi. Protist, 2010, 161: 116-121.
|
| [60] |
Lastovetsky OA, Gaspar ML, Mondo SJ, LaButti KM, Sandor L, Grigoriev IV, Henry SA, Pawlowska TE. Lipid metabolic changes in an early divergent fungus govern the establishment of a mutualistic symbiosis with endobacteria. Proc Natl Acad Sci, 2016, 2016: 15148.
|
| [61] |
Lehtiö J, Sugiyama J, Gustavsson M, Fransson L, Linder M, Teeri TT. The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci, 2003, 100: 484-489.
|
| [62] |
Linder M, Teeri TT. The roles and function of cellulose-binding domains. J Biotechnol, 1997, 57: 15-28.
|
| [63] |
Ma L-J, Ibrahim AS, Skory C, Grabherr MG, Burger G, Butler M, Elias M, Idnurm A, Lang BF, Sone T. Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication. PLoS Genet, 2009, 5: e1000549.
|
| [64] |
Macheleidt J, Mattern DJ, Fischer J, Netzker T, Weber J, Schroeckh V, Valiante V, Brakhage AA. Regulation and role of fungal secondary metabolites. Annu Rev Genet, 2016, 50: 371-392.
|
| [65] |
Mattinen M-L, Linder M, Teleman A, Annila A. Interaction between cellohexaose and cellulose binding domains from Trichoderma reesei cellulases. FEBS Lett, 1997, 407: 291-296.
|
| [66] |
McLaughlin D, McLaughlin E, Lemke P. The Mycota. VII. Systematics and evolution, part B, 2001, Berlin: Springer
|
| [67] |
Mensink MA, Frijlink HW, van der Voort Maarschalk K, Hinrichs WL. Inulin, a flexible oligosaccharide I: review of its physicochemical characteristics. Carbohyd Polym, 2015, 130: 405-419.
|
| [68] |
Mondo SJ, Dannebaum RO, Kuo RC, Louie KB, Bewick AJ, LaButti K, Haridas S, Kuo A, Salamov A, Ahrendt SR. Widespread adenine N6-methylation of active genes in fungi. Nat Genet, 2017, 49: 964.
|
| [69] |
Morin E, Miyauchi S, San Clemente H, Chen EC, Pelin A, de la Providencia I, Ndikumana S, Beaudet D, Hainaut M, Drula E. Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina. New Phytol, 2019, 222: 1584-1598.
|
| [70] |
Morton JB, Benny GL. Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon, 1990, 37: 471-491.
|
| [71] |
Nimlos MR, Beckham GT, Matthews JF, Bu L, Himmel ME, Crowley MF. Binding preferences, surface attachment, diffusivity, and orientation of a family 1 carbohydrate-binding module on cellulose. J Biol Chem, 2012, 287: 20603-20612.
|
| [72] |
Nordberg H, Cantor M, Dusheyko S, Hua S, Poliakov A, Shabalov I, Smirnova T, Grigoriev IV, Dubchak I. The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res, 2013, 42: D26-D31.
|
| [73] |
Orpin C. Studies on the rumen flagellate Neocallimastix frontalis. Microbiology, 1975, 91: 249-262.
|
| [74] |
Papanikolaou S, Galiotou-Panayotou M, Fakas S, Komaitis M, Aggelis G. Lipid production by oleaginous Mucorales cultivated on renewable carbon sources. Eur J Lipid Sci Technol, 2007, 109: 1060-1070.
|
| [75] |
Peyretaillade E, Gonçalves O, Terrat S, Dugat-Bony E, Wincker P, Cornman RS, Evans JD, Delbac F, Peyret P. Identification of transcriptional signals in Encephalitozoon cuniculi widespread among Microsporidia phylum: support for accurate structural genome annotation. BMC Genom, 2009, 10: 607.
|
| [76] |
Phillips CM, Beeson WT IV, Cate JH, Marletta MA. Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem Biol, 2011, 6: 1399-1406.
|
| [77] |
Pombert J-F, Selman M, Burki F, Bardell FT, Farinelli L, Solter LF, Whitman DW, Weiss LM, Corradi N, Keeling PJ. Gain and loss of multiple functionally related, horizontally transferred genes in the reduced genomes of two microsporidian parasites. Proc Natl Acad Sci, 2012, 109: 12638-12643.
|
| [78] |
Raven P, Evert R, Eichhorn S. Biology of plants, 2005, 7, New York: WH Freeman and Co..
|
| [79] |
Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, Walker C. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza, 2013, 23: 515-531.
|
| [80] |
Ronkart SN, Blecker CS, Fourmanoir H, Fougnies C, Deroanne C, Van Herck J-C, Paquot M. Isolation and identification of inulooligosaccharides resulting from inulin hydrolysis. Anal Chim Acta, 2007, 604: 81-87.
|
| [81] |
Russ C, Lang BF, Chen Z, Gujja S, Shea T, Zeng Q, Young S, Cuomo CA, Nusbaum C. Genome sequence of Spizellomyces punctatus. Genome Announc, 2016, 4: e00849-e00916.
|
| [82] |
Rytioja J, Hildén K, Yuzon J, Hatakka A, de Vries RP, Mäkelä MR. Plant-polysaccharide-degrading enzymes from basidiomycetes. Microbiol Mol Biol Rev, 2014, 78: 614-649.
|
| [83] |
Saha BC, Bothast RJ. Enzymology of xylan degradation ACS symposium series, 1999, Washington: Am Chem Soc, 167-194.
|
| [84] |
Scheller HV, Ulvskov P. Hemicelluloses. Annu Rev Plant Biol, 2010, 4: 61.
|
| [85] |
Schüßler A, Gehrig H, Schwarzott D, Walker C. Analysis of partial Glomales SSU rRNA gene sequences: implications for primer design and phylogeny. Mycol Res, 2001, 105: 5-15.
|
| [86] |
Schüßler A, Schwarzott D, Walker C. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res, 2001, 105: 1413-1421.
|
| [87] |
Schwartze VU, Winter S, Shelest E, Marcet-Houben M, Horn F, Wehner S, Linde J, Valiante V, Sammeth M, Riege K. Gene expansion shapes genome architecture in the human pathogen Lichtheimia corymbifera: an evolutionary genomics analysis in the ancient terrestrial mucorales (Mucoromycotina). PLoS Genet, 2014, 10: e1004496.
|
| [88] |
Silar P. Protistes Eucaryotes: origine, evolution et biologie des microbes eucaryotes. HAL Arch Ouver, 2016, 53: 462.
|
| [89] |
Silveira MHL, Aguiar RS, Siika-aho M, Ramos LP. Assessment of the enzymatic hydrolysis profile of cellulosic substrates based on reducing sugar release. Bioresour Technol, 2014, 151: 392-396.
|
| [90] |
Sista Kameshwar AK, Qin W. Comparative study of genome-wide plant biomass-degrading CAZymes in white rot, brown rot and soft rot fungi. Mycology, 2017, 9: 1-13.
|
| [91] |
Sista Kameshwar AK, Qin W. Understanding the structural and functional properties of carbohydrate esterases with a special focus on hemicellulose deacetylating acetyl xylan esterases. Mycology, 2018, 9: 1-23.
|
| [92] |
Skamnioti P, Furlong RF, Gurr SJ. The fate of gene duplicates in the genomes of fungal pathogens. Commun Integr Biol, 2008, 1: 196-198.
|
| [93] |
Slamovits CH, Fast NM, Law JS, Keeling PJ. Genome compaction and stability in microsporidian intracellular parasites. Curr Biol, 2004, 14: 891-896.
|
| [94] |
Smith S, Read D. Mycorrhizal symbiosis, 1997, 2, Cambridge: Academic Press.
|
| [95] |
Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia, 2016, 108: 1028-1046.
|
| [96] |
Subramaniyan S, Prema P. Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol, 2002, 22: 33-64.
|
| [97] |
Summerbell RC. Root endophyte and mycorrhizosphere fungi of black spruce, Picea mariana, in a boreal forest habitat: influence of site factors on fungal distributions. Stud Mycol, 2005, 53: 121-145.
|
| [98] |
Tanabe Y, Saikawa M, Watanabe MM, Sugiyama J. Molecular phylogeny of Zygomycota based on EF-1α and RPB1 sequences: limitations and utility of alternative markers to rDNA. Mol Phylogenet Evol, 2004, 30: 438-449.
|
| [99] |
Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res, 2000, 28: 33-36.
|
| [100] |
Thomson JA. Molecular biology of xylan degradation. FEMS Microbiol Lett, 1993, 104: 65-82.
|
| [101] |
Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, Charron P, Duensing N, Frey NF, Gianinazzi-Pearson V. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci, 2013, 110: 20117-20122.
|
| [102] |
Uehling J, Gryganskyi A, Hameed K, Tschaplinski T, Misztal P, Wu S, Desirò A, Vande Pol N, Du Z, Zienkiewicz A. Comparative genomics of Mortierella elongata and its bacterial endosymbiont Mycoavidus cysteinexigens. Environ Microbiol, 2017, 19(8): 2964-2983.
|
| [103] |
Villares A, Moreau C, Bennati-Granier C, Garajova S, Foucat L, Falourd X, Saake B, Berrin J-G, Cathala B. Lytic polysaccharide monooxygenases disrupt the cellulose fibers structure. Sci Rep, 2017, 7: 40262.
|
| [104] |
Wal A, Geydan TD, Kuyper TW, Boer W. A thready affair: linking fungal diversity and community dynamics to terrestrial decomposition processes. FEMS Microbiol Rev, 2013, 37: 477-494.
|
| [105] |
Wang L, Chen W, Feng Y, Ren Y, Gu Z, Chen H, Wang H, Thomas MJ, Zhang B, Berquin IM. Genome characterization of the oleaginous fungus Mortierella alpina. PLoS ONE, 2011, 6: e28319.
|
| [106] |
Wang D, Wu R, Xu Y, Li M. Draft genome sequence of Rhizopus chinensis CCTCCM201021, used for brewing traditional Chinese alcoholic beverages. Genome Announc, 2013, 1: e00195-e00212.
|
| [107] |
Westereng B, Cannella D, Agger JW, Jørgensen H, Andersen ML, Eijsink VG, Felby C. Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer. Sci Rep, 2015, 5: 18561.
|
| [108] |
White MM, James TY, O’Donnell K, Cafaro MJ, Tanabe Y, Sugiyama J. Phylogeny of the Zygomycota based on nuclear ribosomal sequence data. Mycologia, 2006, 98: 872-884.
|
| [109] |
Youssef NH, Couger M, Struchtemeyer CG, Liggenstoffer AS, Prade RA, Najar FZ, Atiyeh HK, Wilkins MR, Elshahed MS. The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl Environ Microbiol, 2013, 79: 4620-4634.
|
| [110] |
Zhao X, Rignall TR, McCabe C, Adney WS, Himmel ME. Molecular simulation evidence for processive motion of Trichoderma reesei Cel7A during cellulose depolymerization. Chem Phys Lett, 2008, 460: 284-288.
|
| [111] |
Zhao Z, Liu H, Wang C, Xu J-R. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics, 2013, 14(1): 274.
|
Funding
Natural Sciences and Engineering Research Council of Canada (CA)(RGPIN-2017-05366)
Ontario Trillium Foundation(Ontario Trillium Scholarship)