Parthenolide production in cell suspension culture of feverfew
Farzaneh Pourianezhad , Hassan Rahnama , Amir Mousavi , Mahmood Khosrowshahli , Sudabeh Mafakheri
Bioresources and Bioprocessing ›› 2019, Vol. 6 ›› Issue (1) : 23
Parthenolide production in cell suspension culture of feverfew
Feverfew (Tanacetum parthenium) is one of the most important medicinal plants with different pharmacologic properties, such as anti-inflammatory, cardiotonic, antitumor and antiangiogenic activities. Parthenolide (PN) is a main bioactive molecule in feverfew which belongs to sesquiterpene lactone compounds. Currently, the plant cell suspension has been used as a useful method to produce secondary metabolites (SMs) components. Meanwhile, the elicitor application is an effective strategy to induce the production of SMs in plants. The present study was conducted as two different experiments in cell suspension of feverfew. In the first experiment, the effects of explant (shoot and root), hormone (TDZ + NAA and TDZ + 2. 4-D) on cell dry weight for one month were investigated. In the second experiment, the effect of elicitor (namely, MJ, YE and Ag+) and the hormones after 24, 48 and 72 h on PN content was assessed. The result of the first experiment revealed that the simple effects and the interaction of hormone × explant were significant (P < 0.01) for cell dry weight. Growth rate analysis showed that shoot-derived cell suspension in 1 mg L−1 NAA + 0.5 mg L−1 TDZ treatment had the highest amount of cell dry weight 14 days after the culture. According to the second experiment, the highest PN content was obtained in cell suspension containing 0.5 mg L−1 2, 4-D + 0.1 mg L−1 TDZ with application of the YE + MJ elicitor after 48 h. The cell suspension treatment with each of the elicitors had a positive effect on the PN production. In conclusion, the application of combined elicitors in feverfew cell suspension culture can be used as an efficient tool for large-scale PN production.
Elicitors / Feverfew (Tanacetum parthenium) / Cell suspension culture / Parthenolide
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
Gupta S, Chaturvedi P (2019) Enhancing secondary metabolite production in medicinal plants using endophytic elicitors: a case study of Centella asiatica (Apiaceae) and asiaticoside. Endophytes for a Growing World, pp 310–323 |
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
Jeong G-T, Park D-H, Ryu H-W, Hwang B, Woo J-C, Kim D, Kim S-W Production of antioxidant compounds by culture of Panax ginseng CA Meyer hairy roots. In: Twenty-sixth symposium on biotechnology for fuels and chemicals. 2005. Springer, Berlin. pp 1147–1157 |
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
Pourianezhad F, Tahmasebi S, Nikfar S, Mirhoseini M, Abdusi V (2016) Review on feverfew, a valuable medicinal plant. J Herb Med Pharmacol 5 |
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
/
| 〈 |
|
〉 |