Biosynthesis of squalene-type triterpenoids in Saccharomyces cerevisiae by expression of CYP505D13 from Ganoderma lucidum

Xin Song , Han Xiao , Shangwen Luo , Xiaozheng Wang , Wenfang Wang , Shuangjun Lin

Bioresources and Bioprocessing ›› 2019, Vol. 6 ›› Issue (1) : 19

PDF
Bioresources and Bioprocessing ›› 2019, Vol. 6 ›› Issue (1) : 19 DOI: 10.1186/s40643-019-0256-6
Short Report

Biosynthesis of squalene-type triterpenoids in Saccharomyces cerevisiae by expression of CYP505D13 from Ganoderma lucidum

Author information +
History +
PDF

Abstract

Background

Squalene-type triterpenoids (STs) are a class of linearized triterpenoids with significant bioactivities, including anti-cancer, anti-oxidative, and anti-inflammatory activities. The efficient biosynthesis of STs has gained increasing attention.

Results

Using Saccharomyces cerevisiae as a heterologous host, we discovered that overexpression of CYP505D13 from Ganoderma lucidum, a famous medicinal mushroom capable of producing various triterpenoids as secondary metabolites, enables the engineered S. cerevisiae strain to produce two new STs, 4,8-dihydroxy-22,23-oxidosqualene (ST-1), 8-hydroxy-2,3;22,23-squalene dioxide (ST-2), and a known ST, 2,3; 22,23-squalene dioxide (ST-3), at the respective titers of 3.28 mg/L, 13.77 mg/L, and 12.23 mg/L after 59 h fermentation. Furthermore, our in vitro enzymatic assay implies that CYP505D13 is involved in the formation of ST-3.

Conclusions

This study provides a promising alternative to discover STs and facilitate their efficient bioproduction.

Keywords

Cytochrome P450s (CYPs) / Squalene-type triterpenoids (STs) / Saccharomyces cerevisiae / Ganoderma lucidum / Synthetic biology

Cite this article

Download citation ▾
Xin Song, Han Xiao, Shangwen Luo, Xiaozheng Wang, Wenfang Wang, Shuangjun Lin. Biosynthesis of squalene-type triterpenoids in Saccharomyces cerevisiae by expression of CYP505D13 from Ganoderma lucidum. Bioresources and Bioprocessing, 2019, 6(1): 19 DOI:10.1186/s40643-019-0256-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baker GJ, Girvan HM, Matthews S, McLean KJ, Golovanova M, Waltham TN, Rigby SEJ, Nelson DR, Blankley RT, Munro AW. Expression, purification, and biochemical characterization of the flavocytochrome P450 CYP505A30 from Myceliophthora thermophila. ACS Omega, 2017, 2(8): 4705-4724.

[2]

Bernhardt R, Urlacher VB. Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations. Appl Microbiol Biotechnol, 2014, 98(14): 6185-6203.

[3]

Brill E, Hannemann F, Zapp J, Bruning G, Jauch J, Bernhardt R. A new cytochrome P450system from Bacillus megaterium DSM319 for the hydroxylation of 11-keto-beta-boswellic acid (KBA). Appl Microbiol Biotechnol, 2014, 98(4): 1701-1717.

[4]

Cen-Pacheco F, Villa-Pulgarin JA, Mollinedo F, Norte M, Daranas AH, Fernandez JJ. Cytotoxic oxasqualenoids from the red alga Laurencia viridis. Eur J Med Chem, 2011, 46(8): 3302-3308.

[5]

Chen ZM, Wang SL. Two new compounds from cultures of the basidiomycete Antrodiella albocinnamomea. Nat Prod Res, 2015, 29(21): 1985-1989.

[6]

Chen S, Xu J, Liu C, Zhu Y, Nelson DR, Zhou S, Li C, Wang L, Guo X, Sun Y, Luo H, Li Y, Song J, Henrissat B, Levasseur A, Qian J, Li J, Luo X, Shi L, He L, Xiang L, Xu X, Niu Y, Li Q, Han MV, Yan H, Zhang J, Chen H, Lv A, Wang Z, Liu M, Schwartz DC, Sun C. Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nat Commun, 2012, 3: 913.

[7]

Chudzik M, Korzonek-Szlacheta I, Krol W. Triterpenes as potentially cytotoxic compounds. Molecules, 2015, 20(1): 1610-1625.

[8]

Dai Z, Liu Y, Sun Z, Wang D, Qu G, Ma X, Fan F, Zhang L, Li S, Zhang X. Identification of a novel cytochrome P450 enzyme that catalyzes the C-2α hydroxylation of pentacyclic triterpenoids and its application in yeast cell factories. Metab Eng, 2019, 51: 70-78.

[9]

Dong L, Pollier J, Bassard JE, Ntallas G, Almeida A, Lazaridi E, Khakimov B, Arendt P, de Oliveira LS, Lota F, Goossens A, Michoux F, Bak S. Co-expression of squalene epoxidases with triterpene cyclases boosts production of triterpenoids in plants and yeast. Metab Eng, 2018, 49: 1-12.

[10]

Field RB, CE H. Isolation of 2,3;22,23-dioxidosqualene and 24,25-oxidolanosterol from yeast. Arch Biochem Biophys, 1977, 180(2): 465-471.

[11]

Gietz RD, Schiestl RH. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc, 2007, 2(1): 31-34.

[12]

Guengerich FP, Martin MV, Sohl CD, Cheng Q. Measurement of cytochrome P450 and NADPH-cytochrome P450 reductase. Nat Protoc, 2009, 4(9): 1245-1251.

[13]

Han JY, Kim HJ, Kwon YS, Choi YE. The Cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol, 2011, 52(12): 2062-2073.

[14]

Han JY, Hwang HS, Choi SW, Kim HJ, Choi YE. Cytochrome P450 CYP716A53v2 catalyzes the formation of protopanaxatriol from protopanaxadiol during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol, 2012, 53(9): 1535-1545.

[15]

Hardwick JP. Cytochrome P450 omega hydroxylase (CYP4) function in fatty acid metabolism and metabolic diseases. Biochem Pharmacol, 2008, 75(12): 2263-2275.

[16]

José-Luis A, Josefina C, Francrsco S, Fnchez B, Angel M. 2,3:18,19-dioxidosqualene: synthesis and activity as a potent inhibitor of 2,3-oxidosqualene-lanosterol cyclase in rat liver microsomes. Bioorganic Med Chem Lett, 1992, 2(10): 1239-1242.

[17]

Kelly SL, Lamb DC, Cannieux M, Greetham D, Jackson CJ, Marczylo T, Ugochukwu C, Kelly DE. An old activity in the cytochrome P450superfamily (CYP51) and a new story of drugs and resistance. Biochem Soc Trans, 2001, 29: 122-128.

[18]

Kim SK, Karadeniz F. Biological importance and applications of squalene and squalane. Adv Food Nutr Res, 2012, 65: 223-233.

[19]

Kitazume T, Tanaka A, Takaya N, Nakamura A, Matsuyama S, Suzuki T, Shoun H. Kinetic analysis of hydroxylation of saturated fatty acids by recombinant P450foxy produced by an Escherichia coli expression system. Eur J Biochem, 2002, 269(8): 2075-2082.

[20]

Kouam SF, Kusari S, Lamshoft M, Tatuedom OK, Spiteller M. Sapelenins G-J, acyclic triterpenoids with strong anti-inflammatory activities from the bark of the Cameroonian medicinal plant Entandrophragma cylindricum. Phytochemistry, 2012, 83: 79-86.

[21]

Nakayama N, Takemae A, Shoun H. Cytochrome P450foxy, a catalytically self-sufficient fatty acid hydroxylase of the fungus Fusarium oxysporum. J Biochem, 1996, 119(3): 435-440.

[22]

Nguyen HT, Chau VM, Phan VK, Hoang TH, Nguyen HN, Nguyen XC, Tran HQ, Nguyen XN, Hyun JH, Kang HK, Kim YH. Chemical components from the Vietnamese soft coral Lobophytum sp. Arch Pharm Res, 2010, 33(4): 503-508.

[23]

Pollier J, Vancaester E, Kuzhiumparambil U, Vickers CE, Vandepoele K, Goossens A, Fabris M. A widespread alternative squalene epoxidase participates in eukaryote steroid biosynthesis. Nat Microbiol, 2019, 4(2): 226-233.

[24]

Rascon-Valenzuela LA, Velazquez-Contreras C, Garibay-Escobar A, Robles-Zepeda RE. Triterpenoids: synthesis, use in cancer treatment and other biological activities, 2017, New York: Nova Science Pulishers.

[25]

Rosenfeld E, Beauvoit B, Blondin B, Salmon JM. Oxygen consumption by anaerobic Saccharomyces cerevisiae under enological conditions: effect on fermentation kinetics. Appl Environ Microbiol, 2003, 69(1): 113-121.

[26]

Seki H, Sawai S, Ohyama K, Mizutani M, Ohnishi T, Sudo H, Fukushima EO, Akashi T, Aoki T, Saito K, Muranaka T. Triterpene functional genomics in licorice for identification of CYP72A154 involved in the biosynthesis of glycyrrhizin. Plant Cell, 2011, 23(11): 4112-4123.

[27]

Spanova M, Daum G. Squalene—biochemistry, molecular biology, process biotechnology, and applications. Eur J Lipid Sci Tech, 2011, 113(11): 1299-1320.

[28]

Valverde ME, Hernandez-Perez T, Paredes-Lopez O. Edible mushrooms: improving human health and promoting quality life. Int J Microbiol, 2015, 2015: 376-387.

[29]

Wang JB, Li G, Reetz MT. Enzymatic site-selectivity enabled by structure-guided directed evolution. Chem Commun, 2017, 53(28): 3916-3928.

[30]

Wang WF, Xiao H, Zhong JJ. Biosynthesis of a ganoderic acid in Saccharomyces cerevisiae by expressing a cytochrome P450 gene from Ganoderma lucidum. Biotechnol Bioeng, 2018, 115(7): 1842-1854.

[31]

Warleta F, Campos M, Allouche Y, Sanchez-Quesada C, Ruiz-Mora J, Beltran G, Gaforio JJ. Squalene protects against oxidative DNA damage in MCF10A human mammary epithelial cells but not in MCF7 and MDA-MB-231 human breast cancer cells. Food Chem Toxicol, 2010, 48(4): 1092-1100.

[32]

Xiao H, Zhang Y, Wang M. Discovery and engineering of cytochrome P450s for terpenoid biosynthesis. Trends Biotechnol, 2019, 37(6): 618-631.

[33]

Yasumoto S, Seki H, Shimizu Y, Fukushima EO, Muranaka T. Functional characterization of CYP716 family P450 enzymes in triterpenoid biosynthesis in tomato. Front Plant Sci, 2017, 8: 21.

Funding

National Natural Science Foundation of China(31600071)

Natural Science Foundation of Shanghai(17ZR1448900)

AI Summary AI Mindmap
PDF

216

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/