Characterization of a recombinant thermotolerant argonaute protein as an endonuclease by broad guide utilization

Yuesheng Chong , Qian Liu , Fei Huang , Dong Song , Yan Feng

Bioresources and Bioprocessing ›› 2019, Vol. 6 ›› Issue (1) : 21

PDF
Bioresources and Bioprocessing ›› 2019, Vol. 6 ›› Issue (1) : 21 DOI: 10.1186/s40643-019-0254-8
Research

Characterization of a recombinant thermotolerant argonaute protein as an endonuclease by broad guide utilization

Author information +
History +
PDF

Abstract

Background

Prokaryotic argonaute proteins (pAgos) play an important role in host defense in vivo. Most importantly, the thermophilic pAgos with endonuclease activity hold great potential for programmable genetic manipulation. Therefore, exploring argonaute proteins with unique enzyme properties is desired for understanding their diverse catalytic mechanisms and promoting their applications in biotechnology.

Results

The argonaute protein from archaeon Methanocaldococcus fervens (MfAgo) was cloned and overexpressed in Escherichia coli BL21 (DE3). The recombinant protein showed the expected molecular weight of ~ 85.8 kDa by SDS-PAGE. The activity assays demonstrate that MfAgo has cleavage activities toward single-stranded DNA (ssDNA) targets specifically at the site complementary to the position between nucleotides 10 and 11 of the guide strand. Interestingly, MfAgo utilizes small 5′-phosphorylated ssDNA (5′-P ssDNA), 5′-hydroxylated ssDNA (5′-OH ssDNA), and 5′-phosphorylated ssRNA (5′-P ssRNA) as the guides for catalysis. The optimal temperatures are highly dependent on the type of guide and have a range of 80–90 °C. The addition of 0.5 mM Mn2+, Mg2+ or Co2+ to the reaction system significantly enhanced the enzyme activity. Meanwhile, MfAgo is quite active at NaCl concentrations less than 500 mM. Furthermore, structural modeling analyses suggested that its unique wide guide-dependent activity might be related to differing multiple interactions between guides and the MID domain of MfAgo.

Conclusions

MfAgo shows efficient endonuclease activity for ssDNA cleavage. In contrast to most known pAgos, which recognize only one type of guide, MfAgo uses diverse guides, including 5′-P ssDNA, 5′-OH ssDNA, and 5′-P ssRNA, to specifically cleave targets. Characterization of MfAgo expands the understanding of catalysis in the Ago family and provides clues for future genetic manipulation.

Keywords

Argonaute protein / Nucleic acid guide / Endonuclease / DNA cleavage / Homologous modeling

Cite this article

Download citation ▾
Yuesheng Chong, Qian Liu, Fei Huang, Dong Song, Yan Feng. Characterization of a recombinant thermotolerant argonaute protein as an endonuclease by broad guide utilization. Bioresources and Bioprocessing, 2019, 6(1): 21 DOI:10.1186/s40643-019-0254-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2): 215-233.

[2]

Doxzen KW, Doudna JA. DNA recognition by an RNA-guided bacterial argonaute. PLoS ONE, 2017, 12(5): e0177097.

[3]

Enghiad B, Zhao H. Programmable DNA-guided artificial restriction enzymes. ACS Synth Biol, 2017, 6(5): 752-757.

[4]

Kaya E, Doxzen KW, Knoll KR, Wilson RC, Strutt SC, Kranzusch PJ, Doudna JA. A bacterial argonaute with noncanonical guide RNA specificity. Proc Natl Acad Sci USA, 2016, 113(15): 4057-4062.

[5]

Ketting RF. The many faces of RNAi. Dev Cell, 2011, 20(2): 148-161.

[6]

Koonin EV. Evolution of RNA- and DNA-guided antivirus defense systems in prokaryotes and eukaryotes: common ancestry vs convergence. Biol Direct, 2017, 12(1): 5.

[7]

Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33(7): 1870-1874.

[8]

Makarova KS, Wolf YI, van der Oost J, Koonin EV. Prokaryotic homologs of argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol Direct, 2009, 4(1): 29.

[9]

Meister G. Argonaute proteins: functional insights and emerging roles. Nat Rev Genet, 2013, 14(7): 447-459.

[10]

Miyoshi T, Ito K, Murakami R, Uchiumi T. Structural basis for the recognition of guide RNA and target DNA heteroduplex by argonaute. Nat Commun, 2016, 7: 11846.

[11]

Nowotny M, Gaidamakov SA, Crouch RJ, Yang W. Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Cell, 2005, 121(7): 1005-1016.

[12]

Olovnikov I, Chan K, Sachidanandam R, Newman DK, Aravin AA. Bacterial argonaute samples the transcriptome to identify foreign DNA. Mol Cell, 2013, 51(5): 594-605.

[13]

Parker JS. How to slice: snapshots of argonaute in action. Silence, 2010, 1(1): 3.

[14]

Parker JS, Roe SM, Barford D. Structural insights into mRNA recognition from a PIWI domain–siRNA guide complex. Nature, 2005, 434(7033): 663-666.

[15]

Rashid UJ, Paterok D, Koglin A, Gohlke H, Piehler J, Chen JC. Structure of Aquifex aeolicus argonaute highlights conformational flexibility of the PAZ domain as a potential regulator of RNA-induced silencing complex function. J Biol Chem, 2007, 282(18): 13824-13832.

[16]

Repasky MP, Shelley M, Friesner RA. Flexible ligand docking with glide. Curr Protoc Bioinform, 2007

[17]

Rivas FV, Tolia NH, Song JJ, Aragon JP, Liu J, Hannon GJ, Joshua-Tor L. Purified argonaute2 and an siRNA form recombinant human RISC. Nat Struct Mol Biol, 2005, 12(4): 340-349.

[18]

Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res, 2014, 42: W320-W324.

[19]

Ryazansky S, Kulbachinskiy A, Aravin AA. The expanded universe of prokaryotic argonaute proteins. Mbio, 2018

[20]

Schirle NT, MacRae IJ. The crystal structure of human argonaute2. Science, 2012, 336(6084): 1037-1040.

[21]

Sheng G, Zhao H, Wang J, Rao Y, Tian W, Swarts DC, van der Oost J, Patel DJ, Wang Y. Structure-based cleavage mechanism of Thermus thermophilus argonaute DNA guide strand-mediated DNA target cleavage. Proc Natl Acad Sci USA, 2014, 111(2): 652-657.

[22]

Siomi MC, Sato K, Pezic D, Aravin AA. PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol, 2011, 12(4): 246-258.

[23]

Song JJ, Smith SK, Hannon GJ, Joshua-Tor L. Crystal structure of argonaute and its implications for RISC slicer activity. Science, 2004, 305(5689): 1434-1437.

[24]

Swarts DC, Jore MM, Westra ER, Zhu Y, Janssen JH, Snijders AP, Wang Y, Patel DJ, Berenguer J, Brouns SJJ, van der Oost J. DNA-guided DNA interference by a prokaryotic argonaute. Nature, 2014, 507(7491): 258-261.

[25]

Swarts DC, Makarova K, Wang Y, Nakanishi K, Ketting RF, Koonin EV, Patel DJ, van der Oost J. The evolutionary journey of argonaute proteins. Nat Struct Mol Biol, 2014, 21(9): 743-753.

[26]

Swarts DC, Hegge JW, Hinojo I, Shiimori M, Ellis MA, Dumrongkulraksa J, Terns RM, Terns MP, van der Oost J. Argonaute of the archae on Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA. Nucleic Acids Res, 2015, 43(10): 5120-5129.

[27]

Swarts DC, Koehorst JJ, Westra ER, Schaap PJ, van der Oost J. Effects of argonaute on gene expression in Thermus thermophilus. PLoS ONE, 2015, 10(4): e0124880.

[28]

Swarts DC, Szczepaniak M, Sheng G, Chandradoss SD, Zhu Y, Timmers EM, Zhang Y, Zhao H, Lou J, Wang Y, Joo C, van der Oost J. Autonomous generation and loading of DNA guides by bacterial argonaute. Mol Cell, 2017, 65(6): 985-998.

[29]

Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 1994, 22(22): 4673-4680.

[30]

Wang Y, Juranek S, Li H, Sheng G, Tuschl T, Patel DJ. Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature, 2008, 456(7224): 921-926.

[31]

Wang Y, Sheng G, Juranek S, Tuschl T, Patel DJ. Structure of the guide-strand-containing argonaute silencing complex. Nature, 2008, 456(7219): 209-213.

[32]

Wang Y, Juranek S, Li H, Sheng G, Wardle GS, Tuschl T, Patel DJ. Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature, 2009, 461(7265): 754-761.

[33]

Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res, 2018, 46(W1): W296-W303.

[34]

Willkomm S, Oellig CA, Zander A, Restle T, Keegan R, Grohmann D, Schneider S. Structural and mechanistic insights into an archaeal DNA-guided argonaute protein. Nat Microbiol, 2017, 2: 17035.

[35]

Yuan YR, Pei Y, Ma JB, Kuryavyi V, Zhadina M, Meister G, Chen HY, Dauter Z, Tuschl T, Patel DJ. Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Mol Cell, 2005, 19(3): 405-419.

[36]

Yuan YR, Pei Y, Chen HY, Tuschl T, Patel DJ. A potential protein-RNA recognition event along the RISC-loading pathway from the structure of A. aeolicus argonaute with externally bound siRNA. Structure, 2006, 14(10): 1557-1565.

[37]

Zander A, Holzmeister P, Klose D, Tinnefeld P, Grohmann D. Single-molecule FRET supports the two-state model of argonaute action. RNA Biol, 2014, 11(1): 45-56.

[38]

Zander A, Willkomm S, Ofer S, van Wolferen M, Egert L, Buchmeier S, Stöckl S, Tinnefeld P, Schneider S, Klingl A, Albers SV, Werner F, Grohmann D. Guide-independent DNA cleavage by archaeal argonaute from Methanocaldococcus jannaschii. Nat Microbiol, 2017, 2: 17034.

Funding

National Natural Science Foundation of China(31770078)

Ministry of Science and Technology(2017YFE0103300)

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/