Understanding and engineering electrochemically active bacteria for sustainable biotechnology

Atsumi Hirose , Takuya Kasai , Ryota Koga , Yusuke Suzuki , Atsushi Kouzuma , Kazuya Watanabe

Bioresources and Bioprocessing ›› 2019, Vol. 6 ›› Issue (1) : 10

PDF
Bioresources and Bioprocessing ›› 2019, Vol. 6 ›› Issue (1) : 10 DOI: 10.1186/s40643-019-0245-9
Review

Understanding and engineering electrochemically active bacteria for sustainable biotechnology

Author information +
History +
PDF

Abstract

Electrochemically active bacteria (EAB) receive considerable attention in sustainable biotechnology, since they are essential components in microbial fuel cells (MFCs) that are able to generate electricity from biomass wastes. EAB are also expected to be applied to the production of valued chemicals in microbial electrosynthesis systems (MESs) with the supply of electric energy from electrodes. It is, therefore, important to deepen our understanding of EAB in terms of their physiology, genetics and genomics. Knowledge obtained in these studies will facilitate the engineering of EAB for developing more efficient biotechnology processes. In this article, we summarize current knowledge on Shewanella oneidensis MR-1, a representative EAB extensively studied in the laboratory. Studies have shown that catabolic activities of S. oneidensis MR-1 are well tuned for efficiently conserving energy under varied growth conditions, e.g., different electrode potentials, which would, however, in some cases, hamper its application to biotechnology processes. We suggest that understanding of molecular mechanisms underlying environmental sensing and catabolic regulation in EAB facilitates their biotechnological applications.

Keywords

Electrochemically active bacteria / Exoelectrogen / Electrotroph / Electric syntrophy / Microbial fuel cells / Microbial electrolysis cells / Microbial electrosynthesis systems

Cite this article

Download citation ▾
Atsumi Hirose, Takuya Kasai, Ryota Koga, Yusuke Suzuki, Atsushi Kouzuma, Kazuya Watanabe. Understanding and engineering electrochemically active bacteria for sustainable biotechnology. Bioresources and Bioprocessing, 2019, 6(1): 10 DOI:10.1186/s40643-019-0245-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andrews SC, Robinson AK, Rodríguez-Quiñones F. Bacterial iron homeostasis. FEMS Microbiol Rev, 2003, 27: 215-237.

[2]

Aristidou A, Penttilä M. Metabolic engineering applications to renewable resource utilization. Cur Opin Biotechnol, 2000, 11: 187-198.

[3]

Aulenta F, Reale P, Catervi A, Panero S, Reale P, Rossetti S. Kinetics of trichloroethene dechlorination and methane formation by a mixed anaerobic culture in a bio-electrochemical system. Electrochim Acta, 2008, 53: 5300-5305.

[4]

Bond DR, Lovley DR. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol, 2003, 69: 1548-1555.

[5]

Borole AP, Reguera G, Ringeisen B, Wang ZW, Feng Y, Kim BH. Electroactive biofilms: current status and future research needs. Energy Environ Sci, 2011, 4: 4813-4834.

[6]

Botsford JL, Harman JG. Cyclic AMP in prokaryotes. Microbiol Rev, 1992, 56: 100-122.

[7]

Bretschger O, Obraztsova A, Sturm CA, Chang IS, Gorby YA, Reed SB, Culley DE, Reardon CL, Barua S, Romine MF, Zhou J, Beliaev AS, Bouhenni R, Saffarini D, Mansfeld F, Kim BH, Fredrickson JK, Nealson KH. Current production and metal oxide reduction by Shewanella oneidensis MR-1wild type and mutants. Appl Environ Microbiol, 2007, 73: 7003-7012.

[8]

Brutinel ED, Gralnick JA. Preferential utilization of d-Lactate by Shewanella oneidensis. Appl Environ Microbiol, 2012, 78: 8474-8476.

[9]

Bursac T, Gralnick JA, Gescher J. Acetoin production via unbalanced fermentation in Shewanella oneidensis. Biotechnol Bioeng, 2017, 114: 1283-1289.

[10]

Caccavo F, Lonergan DJ, Lovley DR, Davis M, Stolz JF, McInerney MJ. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol, 1994, 60: 3752-3759.

[11]

Chang IS, Moon H, Bretschger O, Jang JK, Park HI, Nealson KH, Kim BH. Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J Microbiol Biotechnol, 2006, 16: 163-177.

[12]

Chao L, Rakshe S, Leff M, Spormann AM. PdeB, a cyclic di-GMP-specific phosphodiesterase that regulates Shewanella oneidensis MR-1 motility and biofilm formation. J Bacteriol, 2013, 195: 3827-3833.

[13]

Charania MA, Brockman KL, Zhang Y, Banerjee A, Pinchuk GE, Fredrickson JK, Beliaev AS, Saffarini DA. Involvement of a membrane-bound class III adenylate cyclase in regulation of anaerobic respiration in Shewanella oneidensis MR-1. J Bacteriol, 2009, 191: 4298-4306.

[14]

Cheng YY, Wu C, Wu JY, Jia HL, Wang MY, Wang HY, Zou SM, Sun RR, Jia R, Xiao YZ. FlrA represses transcription of the biofilm-associated bpfA operon in Shewanella putrefaciens. Appl Environ Microbiol, 2017, 83: e02410-16.

[15]

Choi D, Lee SB, Kim S, Min B, Choi IG, Chang IS. Metabolically engineered glucose-utilizing Shewanella strains under anaerobic conditions. Bioresour Technol, 2014, 154: 59-66.

[16]

Choi S, Kim B, Chang IS. Tracking of Shewanella oneidensis MR-1 biofilm formation of a microbial electrochemical system via differential pulse voltammetry. Bioresour Technol, 2018, 254: 357-361.

[17]

Christen M, Christen B, Folcher M, Schauerte A, Jenal U. Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J Biol Chem, 2005, 280: 30829-30837.

[18]

Chubiz LM, Marx CJ. Growth trade-offs accompany the emergence of glycolytic metabolism in Shewanella oneidensis MR-1. J Bacteriol, 2017, 199: e00827-16.

[19]

Crack J, Green J, Thomson AJ. Mechanism of oxygen sensing by the bacterial transcription factor fumarate–nitrate reduction (FNR). J Biol Chem, 2004, 279: 9278-9286.

[20]

Crain AV, Broderick JB. Pyruvate formate-lyase and its activation by pyruvate formate-lyase activating enzyme. J Biol Chem, 2014, 289: 5723-5729.

[21]

Croese E, Jeremiasse AW, Marshall IP, Spormann AM, Euverink GJ, Geelhoed JS, Stams AJ, Plugge CM. Influence of setup and carbon source on the bacterial community of biocathodes in microbial electrolysis cells. Enzyme Microb Technol, 2014, 61: 67-75.

[22]

Cruz-García C, Murray AE, Rodrigues JL, Gralnick JA, McCue LA, Romine MF, Löffler FE, Tiedje JM. Fnr (EtrA) acts as a fine-tuning regulator of anaerobic metabolism in Shewanella oneidensis MR-1. BMC Microbiol, 2011, 11: 64.

[23]

Das D, Veziroglu TN. Advances in biological hydrogen production processes. Int J Hydrog Energy, 2008, 33: 6046-6057.

[24]

De Lorenzo V, Wee S, Herrero M, Neilands JB. Operator sequences of the aerobactin operon of plasmid ColV-K30 binding the ferric uptake regulation (fur) repressor. J Bacteriol, 1987, 169: 2624-2630.

[25]

De Vriendt K, Theunissen S, Carpentier W, De Smet L, Devreese B, Van Beeumen J. Proteomics of Shewanella oneidensis MR-1 biofilm reveals differentially expressed proteins, including AggA and RibB. Proteomics, 2005, 5: 1308-1316.

[26]

Doyle LE, Marsili E. Methods for enrichment of novel electrochemically-active microorganisms. Bioresour Technol, 2015, 195: 273-282.

[27]

Drake HL, Gößner AS, Daniel SL. Old acetogens, new light. Ann N Y Acad Sci, 2008, 1125: 100-128.

[28]

Duhl KL, Tefft NM, TerAvest MA. Shewanella oneidensis MR-1 utilizes both sodium- and proton-pumping NADH dehydrogenases during aerobic growth. Appl Environ Microbiol, 2018, 84: e00415-18.

[29]

Firer-Sherwood M, Pulcu GS, Elliott SJ. Electrochemical interrogations of the Mtr cytochromes from Shewanella: opening a potential window. J Biol Inorg Chem, 2008, 13: 849-854.

[30]

Flynn JM, Ross DE, Hunt KA, Bond DR, Gralnick JA. Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria. MBio, 2010, 1: e00190-10.

[31]

Fredrickson JK, Romine MF, Beliaev AS, Auchtung JM, Driscoll ME, Gardner TS, Nealson KH, Osterman AL, Pinchuk G, Reed JL, Rodionov DA, Rodrigues JL, Saffarini DA, Serres MH, Spormann AM, Zhulin IB, Tiedje JM. Towards environmental systems biology of Shewanella. Nat Rev Microbiol, 2008, 6: 592-603.

[32]

Gancedo JM. Biological roles of cAMP: variations on a theme in the different kingdoms of life. Biol Rev Camb Philos Soc, 2013, 88: 645-668.

[33]

Gao H, Wang X, Yang ZK, Palzkill T, Zhou J. Probing regulon of ArcA in Shewanella oneidensis MR-1 by integrated genomic analyses. BMC Genom, 2008, 9: 42.

[34]

Gao H, Wang X, Yang ZK, Chen J, Liang Y, Chen H, Palzkill T, Zhou J. Physiological roles of ArcA, Crp, and EtrA and their interactive control on aerobic and anaerobic respiration in Shewanella oneidensis. PLoS ONE, 2010, 5: e15295.

[35]

Georgellis D, Kwon O, Lin EC. Quinones as the redox signal for the arc two-component system of bacteria. Science, 2001, 292: 2314-2316.

[36]

Gödeke J, Paul K, Lassak J, Thormann KM. Phage-induced lysis enhances biofilm formation in Shewanella oneidensis MR-1. ISME J, 2011, 5: 613-626.

[37]

Gorby Y, Mclean J, Korenevsky A, Rosso K, El-Naggar MY, Beveridge TJ. Redox-reactive membrane vesicles produced by Shewanella. Geobiology, 2008, 6: 232-241.

[38]

Griggs DW, Konisky J. Mechanism for iron-regulated transcription of the Escherichia coli cir gene: metal-dependent binding of Fur protein to the promoters. J Bacteriol, 1989, 171: 1048-1054.

[39]

Grobbler C, Virdis B, Nouwens A, Harnisch F, Rabaey K, Bond PL. Use of SWATH mass spectrometry for quantitative proteomic investigation of Shewanella oneidensis MR-1 biofilms grown on graphite cloth electrodes. Syst Appl Microbiol, 2015, 38: 135-139.

[40]

Gunsalus RP, Park SJ. Aerobic-anaerobic gene regulation in Escherichia coli: control by the ArcAB and Fnr regulons. Res Microbiol, 1994, 145: 437-450.

[41]

Heidelberg JF, Paulsen IT, Nelson KE, Gaidos EJ, Nelson WC, Read TD, Eisen JA, Seshadri R, Ward N, Methe B, Clayton RA, Meyer T, Tsapin A, Scott J, Beanan M, Brinkac L, Daugherty S, DeBoy RT, Dodson RJ, Durkin AS, Haft DH, Kolonay JF, Madupu R, Peterson JD, Umayam LA, White O, Wolf AM, Vamathevan J, Weidman J, Impraim M, Lee K, Berry K, Lee C, Mueller J, Khouri H, Gill J, Utterback TR, McDonald LA, Feldblyum TV, Smith HO, Venter JC, Nealson KH, Fraser CM. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat Biotechnol, 2002, 20: 1118-1123.

[42]

Hengge R, Gründling A, Jenal U, Ryan R, Yildiz F. Bacterial signal transduction by cyclic di-GMP and other nucleotide second messengers. J Bacteriol, 2016, 198: 15-26.

[43]

Hickman JW, Harwood CS. Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol, 2008, 69: 376-389.

[44]

Hirose A, Kasai T, Aoki M, Umemura T, Watanabe K, Kouzuma A. Electrochemically active bacteria sense electrode potentials for regulating catabolic pathways. Nat Commun, 2018, 9: 1083.

[45]

Hollands K, Busby SJW, Lloyd GS. New targets for the cyclic AMP receptor protein in the Escherichia coli K-12 genome. FEMS Microbiol Lett, 2007, 274: 89-94.

[46]

Howard EC, Hamdan LJ, Lizewski SE, Ringeisen BR. High frequency of glucose-utilizing mutants in Shewanella oneidensis MR-1. FEMS Microbiol Lett, 2012, 327: 9-14.

[47]

Hunt KA, Flynn JM, Naranjo B, Shikhare ID, Gralnick JA. Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1. J Bacteriol, 2010, 192: 3345-3351.

[48]

Iuchi S, Lin EC. arcA, a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Proc Natl Acad Sci USA, 1988, 85: 1888-1892.

[49]

Jenal U, Reinders A, Lori C. Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol, 2017, 15: 271-284.

[50]

Jeon JM, Park H, Seo HM, Kim JH, Bhatia SK, Sathiyanarayanan G, Song HS, Park SH, Choi KY, Sang BI, Yang YH. Isobutanol production from an engineered Shewanella oneidensis MR-1. Bioprocess Biosyst Eng, 2015, 38: 2147-2154.

[51]

Jeon JM, Song HS, Lee DG, Hong JW, Hong YG, Moon YM, Bhatia SK, Yoon JJ, Kim W, Yang YH. Butyrate-based n-butanol production from an engineered Shewanella oneidensis MR-1. Bioprocess Biosyst Eng, 2018, 41: 1195-1204.

[52]

Jormakka M, Törnroth S, Byrne B, Iwata S. Molecular basis of proton motive force generation: structure of formate dehydrogenase-N. Science, 2002, 295: 1863-1868.

[53]

Kane AL, Brutinel ED, Joo H, Maysonet R, VanDrisse CM, Kotloski NJ, Gralnick JA. Formate metabolism in Shewanella oneidensis generates proton motive force and prevents growth without an electron acceptor. J Bacteriol, 2016, 198: 1337-1346.

[54]

Kasai T, Kouzuma A, Nojiri H, Watanabe K. Transcriptional mechanisms for differential expression of outer membrane cytochrome genes omcA and mtrC in Shewanella oneidensis MR-1. BMC Microbiol, 2015, 15: 68.

[55]

Kasai T, Kouzuma A, Watanabe K. CRP regulates d-lactate oxidation in Shewanella oneidensis MR-1. Front Microbiol, 2017, 8: 869.

[56]

Kasai T, Kouzuma A, Watanabe K. CpdA is involved in amino acid metabolism in Shewanella oneidensis MR-1. Biosci Biotechnol Biochem, 2018, 82: 166-172.

[57]

Kato S, Hashimoto K, Watanabe K. Iron-oxide minerals affect extracellular electron-transfer paths of Geobacter spp. Microbes Environ, 2013, 28: 141-148.

[58]

Kim BH, Kim HJ, Hyun MS, Park DH. Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechnol, 1999, 9: 127-131.

[59]

Kitayama M, Koga R, Kasai T, Kouzuma A, Watanabe K. Structures, compositions, and activities of live Shewanella biofilms formed on graphite electrodes in electrochemical flow cells. Appl Environ Microbiol, 2017, 83: 166-172.

[60]

Knappe J, Neugebauer FA, Blaschkowski HP, Gänzler M. Post-translational activation introduces a free radical into pyruvate formate-lyase. Proc Natl Acad Sci USA, 1984, 81: 1332-1335.

[61]

Kokko ME, Mäkinen AE, Puhakka JA. Anaerobes in bioelectrochemical systems. Adv Biochem Eng Biotechnol, 2016, 156: 263-292.

[62]

Kouzuma A, Meng XY, Kimura N, Hashimoto K, Watanabe K. Disruption of the putative cell surface polysaccharide biosynthesis gene SO3177 in Shewanella oneidensis MR-1 enhances adhesion to electrodes and current generation in microbial fuel cells. Appl Environ Microbiol, 2010, 76: 4151-4157.

[63]

Kouzuma A, Hashimoto K, Watanabe K. Influences of aerobic respiration on current generation by Shewanella oneidensis MR-1 in single-chamber microbial fuel cells. Biosci Biotechnol Biochem, 2012, 76: 270-275.

[64]

Kouzuma A, Hashimoto K, Watanabe K. Roles of siderophore in manganese-oxide reduction by Shewanella oneidensis MR-1. FEMS Microbiol Lett, 2012, 326: 91-98.

[65]

Kouzuma A, Kasai T, Hirose A, Watanabe K. Catabolic and regulatory systems in Shewanella oneidensis MR-1 involved in electricity generation in microbial fuel cells. Front Microbiol, 2015, 6: 609.

[66]

Kouzuma A, Ishii S, Watanabe K. Metagenomic insights into the ecology and physiology of microbes in bioelectrochemical systems. Bioresour Technol, 2018, 255: 302-307.

[67]

Kracke F, Lai B, Yu S, Krömer JO. Balancing cellular redox metabolism in microbial electrosynthesis and electro fermentation—a chance for metabolic engineering. Metab Eng, 2018, 45: 109-120.

[68]

Kreuzer HW, Hill EA, Moran JJ, Bartholomew RA, Yang H, Hegg EL. Contributions of the [NiFe]- and [FeFe]-hydrogenase to H2 production in Shewanella oneidensis MR-1 as revealed by isotope ratio analysis of evolved H2. FEMS Microbiol Lett, 2014, 352: 18-24.

[69]

Lassak J, Henche A-L, Binnenkade L, Thormann KM. ArcS, the cognate sensor kinase in an atypical Arc system of Shewanella oneidensis MR-1. Appl Environ Microbiol, 2010, 76: 3263-3274.

[70]

Lassak J, Bubendorfer S, Thormann KM. Domain analysis of ArcS, the hybrid sensor kinase of the Shewanella oneidensis MR-1 Arc two-component system, reveals functional differentiation of its two receiver domains. J Bacteriol, 2013, 195: 482-492.

[71]

Le Laz S, Kpebe A, Lorquin J, Brugna M, Rousset M. H2-dependent azoreduction by Shewanella oneidensis MR-1: involvement of secreted flavins and both [Ni–Fe] and [Fe–Fe] hydrogenases. Appl Microbiol Biotechnol, 2014, 98: 2699-2707.

[72]

Lefebvre O, Uzabiaga A, Chang IS, Kim BH, Ng HY. Microbial fuel cells for energy self-sufficient domestic wastewater treatment-a review and discussion from energetic consideration. Appl Microbiol Biotechnol, 2011, 89: 259-270.

[73]

Li F, Li Y, Sun L, Li X, Yin C, An X, Chen X, Tian Y, Song H. Engineering Shewanella oneidensis enables xylose-fed microbial fuel cell. Biotechnol Biofuels, 2017, 10: 1-10.

[74]

Li SW, Zeng RJ, Sheng GP. An excellent anaerobic respiration mode for chitin degradation by Shewanella oneidensis MR-1 in microbial fuel cells. Biochem Eng J, 2017, 118: 20-24.

[75]

Li F, Li Y, Sun L, Chen X, An X, Yin C, Cao Y, Wu H, Song H. Modular engineering intracellular NADH regeneration boosts extracellular electron transfer of Shewanella oneidensis MR-1. ACS Synth Biol, 2018, 7: 885-895.

[76]

Li M, Zhou M, Tian X, Tan C, McDaniel CT, Hassett DJ, Gu T. Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity. Biotechnol Adv, 2018, 36: 1316-1327.

[77]

Liu C, Gorby YA, Zachara JM, Fredrickson JK, Brown CF. Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria. Biotechnol Bioeng, 2002, 80: 637-649.

[78]

Liu CG, Xue C, Lin YH, Bai FW. Redox potential control and applications in microaerobic and anaerobic fermentations. Biotechnol Adv, 2013, 31: 257-265.

[79]

Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K. Microbial fuel cells: methodology and technology. Environ Sci Technol, 2006, 40: 5181-5192.

[80]

Lovley DR. Electromicrobiology. Annu Rev Microbiol, 2012, 66: 391-409.

[81]

Lu M, Chan S, Babanova S, Bretschger O. Effect of oxygen on the per-cell extracellular electron transfer rate of Shewanella oneidensis MR-1 explored in bioelectrochemical systems. Biotechnol Bioeng, 2017, 11: 96-105.

[82]

Luo S, Guo W, Nealson KH, Feng X, He Z. 13C pathway analysis for the role of formate in electricity generation by Shewanella oneidensis MR-1 using lactate in microbial fuel cells. Sci Rep, 2016, 6: 1-8.

[83]

Marritt SJ, McMillan DG, Shi L, Fredrickson JK, Zachara JM, Richardson DJ, Jeuken LJ, Butt JN. The roles of CymA in support of the respiratory flexibility of Shewanella oneidensis MR-1. Biochem Soc Trans, 2012, 40: 1217-1221.

[84]

Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR. Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA, 2008, 105: 3968-3973.

[85]

McDowall JS, Murphy BJ, Haumann M, Palmer T, Armstrong FA, Sargent F. Bacterial formate hydrogenlyase complex. Proc Natl Acad Sci USA, 2014, 111: 3948-3956.

[86]

Melo AMP, Bandeiras TM, Teixeira M. New insights into type II NAD(P)H: quinone oxidoreductases. Microbiol Mol Biol Rev, 2004, 68: 603-616.

[87]

Meshulam-Simon G, Behrens S, Choo AD, Spormann AM. Hydrogen metabolism in Shewanella oneidensis MR-1. Appl Environ Microbiol, 2007, 73: 1153-1165.

[88]

Moore LJ, Mettert EL, Kiley PJ. Regulation of FNR dimerization by subunit charge repulsion. J Biol Chem, 2006, 281: 33268-33275.

[89]

Mordkovich NN, Voeĭkova TA, Novikova TA, Smirnov IA, Il’in VK, Soldatov PE, Tiurin-Kuz’min AI, Smolenskaia TS, Veĭko VP, Shakulov RS, Debabov VG. Influence of NAD-dependent formate dehydrogenase on anaerobic respiration of Shewanella oneidensis MR-1. Mikrobiologiia, 2013, 82: 395-401.

[90]

Moscoviz R, Toledo-Alarcón J, Trably E, Bernet N. Electro-fermentation: how to drive fermentation using electrochemical systems. Trends Biotechnol, 2016, 34: 856-865.

[91]

Myers CR, Nealson KH. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science, 1988, 240: 1319-1321.

[92]

Naik SN, Goud VV, Rout PK, Dalai AK. Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev, 2010, 14: 578-597.

[93]

Nakagawa G, Kouzuma A, Hirose A, Kasai T, Yoshida G, Watanabe K. Metabolic characteristics of a glucose-utilizing Shewanella oneidensis strain grown under electrode-respiring conditions. PLoS ONE, 2015, 10: e0138813.

[94]

Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio, 2010, 1: 1-4.

[95]

Newman DK, Kolter R. A role for excreted quinones in extracellular electron transfer. Nature, 2000, 405: 94-97.

[96]

Newton GJ, Mori S, Nakamura R, Hashimoto K, Watanabe K. Analyses of current-generating mechanisms of Shewanella loihica PV-4 and Shewanella oneidensis MR-1 in microbial fuel cells. Appl Environ Microbiol, 2009, 75: 7674-7681.

[97]

Orr MW, Donaldson GP, Severin GB, Wang J, Sintim HO, Waters CM, Lee VT. Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover. Proc Natl Acad Sci USA, 2015, 112: 5048-5057.

[98]

Paul R, Weiser S, Amiot NC, Chan C, Schirmer T, Giese B, Jenal U. Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev, 2004, 18: 715-727.

[99]

Pinchuk GE, Rodionov DA, Yang C, Li X, Osterman AL, Dervyn E, Geydebrekht OV, Reed SB, Romine MF, Collart FR, Scott JH, Fredrickson JK, Beliaev AS. Genomic reconstruction of Shewanella oneidensis MR-1 metabolism reveals a previously uncharacterized machinery for lactate utilization. Proc Natl Acad Sci USA, 2009, 106: 2874-2879.

[100]

Pinchuk GE, Geydebrekht OV, Hill EA, Reed JL, Konopka AE, Beliaev AS, Fredrickson JK. Pyruvate and lactate metabolism by Shewanella oneidensis MR-1 under fermentation, oxygen limitation, and fumarate respiration conditions. Appl Environ Microbiol, 2011, 77: 8234-8240.

[101]

Pirbadian S, Barchinger SE, Leung KM, Byun HS, Jangir Y, Bouhenni RA, Reed SB, Romine MF, Saffarini DA, Shi L, Gorby YA, Golbeck JH, El-Naggar MY. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc Natl Acad Sci USA, 2014, 111: 12883-12888.

[102]

Rabaey K, Rozendal RA. Microbial electrosynthesis—revisiting the electrical route for microbial production. Nat Rev Microbiol, 2010, 8: 706-716.

[103]

Redwood MD, Mikheenko IP, Sargent F, Macaskie LE. Dissecting the roles of Escherichia coli hydrogenases in biohydrogen production. FEMS Microbiol Lett, 2008, 278: 48-55.

[104]

Rodionov DA, Novichkov PS, Stavrovskaya ED, Rodionova IA, Li X, Kazanov MD, Ravcheev DA, Gerasimova AV, Kazakov AE, Kovaleva GY, Permina EA, Laikova ON, Overbeek R, Romine MF, Fredrickson JK, Arkin AP, Dubchak I, Osterman AL, Gelfand MS. Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the Shewanella genus. BMC Genom, 2011, 12(Suppl 1): S3.

[105]

Ross DE, Flynn JM, Baron DB, Gralnick JA, Bond DR. Towards electrosynthesis in Shewanella: energetics of reversing the mtr pathway for reductive metabolism. PLoS ONE, 2011, 6: e16649.

[106]

Rowe AR, Rajeev P, Jain A, Pirbadian S, Okamoto A, Gralnick JA, El-Naggar MY, Nealson KH. Tracking electron uptake from a cathode into Shewanella cells: implications for energy acquisition from solid-substrate electron donors. MBio, 2018, 9: 1-19.

[107]

Ryan RP, Fouhy Y, Lucey JF, Crossman LC, Spiro S, He YW, Zhang LH, Heeb S, Cámara M, Williams P, Dow JM. Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc Natl Acad Sci USA, 2006, 103: 6712-6717.

[108]

Saffarini DA, Schultz R, Beliaev A. Involvement of cyclic AMP (cAMP) and cAMP receptor protein in anaerobic respiration of Shewanella oneidensis. J Bacteriol, 2003, 185: 3668-3671.

[109]

Santoro C, Arbizzani C, Erable B, Ieropoulos I. Microbial fuel cells: from fundamentals to applications. A review. J Power Sources, 2017, 356: 225-244.

[110]

Scheller HV. Plant cell wall: never too much acetate. Nat Plants, 2017, 3: 17024.

[111]

Schröder U, Harnisch F, Angenent LT. Microbial electrochemistry and technology: terminology and classification. Energy Environ Sci, 2015, 8: 513-519.

[112]

Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol, 2015, 13: 605-619.

[113]

Sekar R, Shin HD, DiChristina TJ. Activation of an otherwise silent xylose metabolic pathway in Shewanella oneidensis. Appl Environ Microbiol, 2016, 82: 3996-4005.

[114]

Shi L, Squier TC, Zachara JM, Fredrickson JK. Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol Microbiol, 2007, 65: 12-20.

[115]

Shi L, Dong H, Reguera G, Beyenal H, Lu A, Liu J, Yu HQ, Fredrickson JK. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Microbiol, 2016, 14: 651-662.

[116]

Shimada T, Fujita N, Yamamoto K, Ishihama A. Novel roles of cAMP receptor protein (CRP) in regulation of transport and metabolism of carbon sources. PLoS One, 2011, 6: e20081.

[117]

Stoeckl M, Schlegel C, Sydow A, Holtmann D, Ulber R, Mangold KM. Membrane separated flow cell for parallelized electrochemical impedance spectroscopy and confocal laser scanning microscopy to characterize electro-active microorganisms. Electrochim Acta, 2016, 220: 444-452.

[118]

Sturm G, Richter K, Doetsch A, Heide H, Louro RO, Gescher J. A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime. ISME J, 2015, 9: 1802-1811.

[119]

Sydow A, Krieg T, Mayer F, Schrader J, Holtmann D. Electroactive bacteria—molecular mechanisms and genetic tools. Appl Microbiol Biotechnol, 2014, 98: 8481-8895.

[120]

Szeinbaum N, Lin H, Brandes JA, Taillefert M, Glass JB, DiChristina TJ. Microbial manganese(III) reduction fuelled by anaerobic acetate oxidation. Environ Microbiol, 2017, 19: 3475-3486.

[121]

Tang YJ, Hwang JS, Wemmer DE, Keasling JD. Shewanella oneidensis MR-1 fluxome under various oxygen conditions. Appl Environ Microbiol, 2007, 73: 718-729.

[122]

Thormann KM, Saville RM, Shukla S, Pelletier DA, Spormann AM. Initial phases of biofilm formation in Shewanella oneidensis MR-1. J Bacteriol, 2004, 186: 8096-8104.

[123]

Thormann KM, Saville RM, Shukla S, Spormann AM. Induction of rapid detachment in Shewanella oneidensis MR-1 biofilms. J Bacteriol, 2005, 187: 1014-1021.

[124]

Thormann KM, Duttler S, Saville RM, Hyodo M, Shukla S, Hayakawa Y, Spormann AM. Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilms by cyclic di-GMP. J Bacteriol, 2006, 188: 2681-2691.

[125]

Torella JP, Gagliardi CJ, Chen JS, Bediako DK, Colón B, Way JC, Silver PA, Nocera DG. Efficient solar-to-fuels production from a hybrid microbial water-splitting catalyst system. Proc Natl Acad Sci USA, 2015, 112: 2337-2342.

[126]

Ueoka N, Kouzuma A, Watanabe K. Electrode plate-culture methods for colony isolation of exoelectrogens from anode microbiomes. Bioelectrochemistry, 2018, 124: 1-6.

[127]

Venkateswaran K, Moser DP, Dollhopf ME, Lies DP, Saffarini DA, MacGregor BJ, Ringelberg DB, White DC, Nishijima M, Sano H, Burghardt J, Stackebrandt E, Nealson KH. Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol, 1999, 49: 705-724.

[128]

Wan XF, Verberkmoes NC, McCue LA, Stanek D, Connelly H, Hauser LJ, Wu L, Liu X, Yan T, Leaphart A, Hettich RL, Zhou J, Thompson DK. Transcriptomic and proteomic characterization of the Fur modulon in the metal-reducing bacterium Shewanella oneidensis. J Bacteriol, 2004, 186: 8385-8400.

[129]

Wang CC, Chang CW, Chu CP, Lee DJ, Chang BV, Liao CS. Producing hydrogen from wastewater sludge by Clostridium bifermentans. J Biotechnol, 2003, 102: 83-92.

[130]

Watanabe K. Recent developments in microbial fuel cell technologies for sustainable bioenergy. J Biosci Bioeng, 2008, 106: 528-536.

[131]

Xiao Y, Zhang E, Zhang J, Dai Y, Yang Z, Christensen HEM, Ulstrup J, Zhao F. Extracellular polymeric substances are transient media for microbial extracellular electron transfer. Sci Adv, 2017, 3: e1700623.

[132]

Yang C, Rodionov DA, Li X, Laikova ON, Gelfand MS, Zagnitko OP, Romine MF, Obraztsova AY, Nealson KH, Osterman AL. Comparative genomics and experimental characterization of N-acetylglucosamine utilization pathway of Shewanella oneidensis. J Biol Chem, 2006, 281: 29872-29885.

[133]

Yang Y, Harris DP, Luo F, Wu L, Parsons AB, Palumbo AV, Zhou J. Characterization of the Shewanella oneidensis Fur gene: roles in iron and acid tolerance response. BMC Genom, 2008, 9: S11.

[134]

Yang Y, Harris DP, Luo F, Xiong W, Joachimiak M, Wu L, Dehal P, Jacobsen J, Yang Z, Palumbo AV, Arkin AP, Zhou J. Snapshot of iron response in Shewanella oneidensis by gene network reconstruction. BMC Genom, 2009, 10: 131.

[135]

Yin J, Meng Q, Fu H, Gao H. Reduced expression of cytochrome oxidases largely explains cAMP inhibition of aerobic growth in Shewanella oneidensis. Sci Rep, 2016, 6: 24449.

[136]

Yoshizawa T, Miyahara M, Kouzuma A, Watanabe K. Conversion of activated-sludge reactors to microbial fuel cells for wastewater treatment coupled to electricity generation. J Biosci Bioeng, 2014, 118: 533-539.

[137]

Yu YY, Fang Z, Gao L, Song H, Yang L, Mao B, Yong YC. Engineering of bacterial electrochemical activity with global regulator manipulation. Electrochem Commun, 2018, 86: 117-120.

[138]

Yuan J, Wei B, Lipton MS, Gao H. Impact of ArcA loss in Shewanella oneidensis revealed by comparative proteomics under aerobic and anaerobic conditions. Proteomics, 2012, 12: 1957-1969.

[139]

Zhao JS, Deng Y, Manno D, Hawari J. Shewanella spp. genomic evolution for a cold marine lifestyle and in situ explosive biodegradation. PLoS ONE, 2010, 5: e9109.

[140]

Zheng T, Xu YS, Yong XY, Li B, Yin D, Cheng QW, Yuan HR, Yong YC. Endogenously enhanced biosurfactant production promotes electricity generation from microbial fuel cells. Bioresour Technol, 2015, 197: 416-421.

[141]

Zhou L, Srisatjaluk R, Justus DE, Doyle RJ. On the origin of membrane vesicles in gram-negative bacteria. FEMS Microbiol Lett, 1998, 163: 223-228.

[142]

Zhou G, Yuan J, Gao H. Regulation of biofilm formation by BpfA, BpfD, and BpfG in Shewanella oneidensis. Front Microbiol, 2015, 6: 790.

Funding

Japan Society for the Promotion of Science(15H01753)

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/