Seafood waste: a source for preparation of commercially employable chitin/chitosan materials
Monika Yadav , Priynshi Goswami , Kunwar Paritosh , Manish Kumar , Nidhi Pareek , Vivekanand Vivekanand
Bioresources and Bioprocessing ›› 2019, Vol. 6 ›› Issue (1) : 8
Seafood waste: a source for preparation of commercially employable chitin/chitosan materials
Modern seafood processing practices result in amassment of a large volume of waste products, i.e., skin, head, tails, shells, scales, backbones, etc. These waste products may often encompass several high-value products which are still untapped due to the dearth of appropriate management. Moreover, inadequate disposal of waste also has negative implications on both environment and human health. This seafood waste often contains a huge amount of chitin, a polysaccharide that exhibits exceptional inherent characteristics including biocompatibility, biodegradability, antimicrobial, antitumor and antioxidant activities. The present review summarizes the existing methods for recovery of chitin and its derivatives from marine waste. The preparation of chitin nanoparticles was discussed along with blending of chitin and chitosan with other biopolymers. The recent trends of the application of chitin and chitosan nanostructures in various sectors were explored. This review is an attempt to highlight the extraction methods of chitin and chitosan from marine waste resources and its transformation into valuable commercial products as a solution to waste management.
Chitin / Chitosan / N-Acetyl glucosamine / Biopolymers / Composites / Scaffolds
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
Bohlman JA, Schisler DO, Hwang KO, Hennling JP, Trinkle JR, Anderson TB, Steinke JD, Vanderhoff A (2004) N-Acetyl-d-glucosamine and process for producing N-acetyl-d-glucosamine. US Patent 6,693,188, 17 Feb 2004 |
| [23] |
|
| [24] |
|
| [25] |
Chaput C, Chenite A (2014) Injectable in situ self-forming mineral-polymer hybrid composition and uses thereof. US Patent 8,747,899, 10 Jun 2014 |
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
Community Research and Development Information Service, European Commission. http://cordis.europa.eu/home_en.html. Accessed 24 Mar 2018 |
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
D’huart JB, Dallas C (2004) Cactaceae-based formulation having the property of fixing fats, and method for obtaining same. US Patent 2004,0,126,444 A1, 1 July, 2004. https://patents.google.com/patent/US20040126444 |
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
Dutta PK, Dutta J, Tripathi VS (2004) Chitin and chitosan: chemistry, properties and applications. J Sci Ind Res 63:20–31. http://nopr.niscair.res.in/handle/123456789/5397 |
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
Finkielsztein S, Vournakis JN (2015) Hemostatic compositions and therapeutic regimens. US 9,139,664 B2, 22 Sep, 2015. https://www.lens.org/lens/patent/US_9139663_B2 |
| [47] |
|
| [48] |
Francis RJ, Prestwich GD, Hunt G (2015) System and method of delivering a hyaluronic acid composition and a copper composition for treatment of dermatologic conditions. WO 2015,081,304 A1, 4 June 2015. https://patents.google.com/patent/WO2015081304A1/en |
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
Johnson EL, Nichols EJ (2000) High tap density chitosan, and methods of production. US 6130321 A, Oct |
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
Khorrami M, Najafpour GD, Younes H, Hosseinpour MN (2012) Production of chitin and chitosan from shrimp shell in batch culture of Lactobacillus plantarum. Chem Biochem Eng Quarterly 26(3):217–223. https://hrcak.srce.hr/87355 |
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
Lucchesi L, Xie H (2015) Wound dressing devices and methods. US 9,205,170 B2, 8 Dec 2015. https://patents.google.com/patent/US9205170 |
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
McCarthy S, McGrath B, Winata E (2012) Absorbable tissue dressing assemblies, systems, and methods formed from hydrophilic polymer sponge structures such as chitosan. US 8,269,058 B2, 18 Sept 2012. https://www.lens.org/lens/patent/US_8269058_B2 |
| [99] |
McCarthy SJ, Gregory KW, Wiesmann WP, Campbell TD (2014) Wound dressing and method for controlling severe, life-threatening bleeding. US 8,668,924 B2, 11 Mar 2014. https://patents.google.com/patent/US8668924 |
| [100] |
Medovent Reaxon® http://medovent.de/en/reaxon/reaxon-nerve-guide/. Accessed 24 Mar 2018 |
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
|
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
|
| [122] |
|
| [123] |
|
| [124] |
|
| [125] |
|
| [126] |
|
| [127] |
|
| [128] |
|
| [129] |
|
| [130] |
|
| [131] |
|
| [132] |
|
| [133] |
|
| [134] |
|
| [135] |
|
| [136] |
|
| [137] |
|
| [138] |
|
| [139] |
|
| [140] |
|
| [141] |
|
| [142] |
|
| [143] |
|
| [144] |
|
| [145] |
|
| [146] |
|
| [147] |
|
| [148] |
|
| [149] |
|
| [150] |
|
| [151] |
|
| [152] |
|
| [153] |
|
| [154] |
|
| [155] |
|
| [156] |
|
| [157] |
|
| [158] |
|
| [159] |
|
| [160] |
|
| [161] |
|
| [162] |
|
| [163] |
|
| [164] |
|
| [165] |
|
| [166] |
|
| [167] |
|
| [168] |
|
| [169] |
|
| [170] |
|
| [171] |
|
/
| 〈 |
|
〉 |