d-erythritol 4-phosphate (MEP),Isopentenyl diphosphate (IPP),Dimethylallyl diphosphate (DMAPP),Biosynthesis" /> d-erythritol 4-phosphate (MEP)" /> d-erythritol 4-phosphate (MEP),Isopentenyl diphosphate (IPP),Dimethylallyl diphosphate (DMAPP),Biosynthesis" />

Towards efficient terpenoid biosynthesis: manipulating IPP and DMAPP supply

Qin Wang , Shu Quan , Han Xiao

Bioresources and Bioprocessing ›› 2019, Vol. 6 ›› Issue (1) : 6

PDF
Bioresources and Bioprocessing ›› 2019, Vol. 6 ›› Issue (1) : 6 DOI: 10.1186/s40643-019-0242-z
Review

Towards efficient terpenoid biosynthesis: manipulating IPP and DMAPP supply

Author information +
History +
PDF

Abstract

Terpenoids are a group of largest natural products with important biological functions, and their efficient biosynthesis is of particular importance to both academia and industry. As the building blocks for terpenoid biosynthesis, a suitable supply of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) is extremely crucial for efficient terpenoid biosynthesis. With this focus, we first introduce biosynthetic pathways of IPP and DMAPP, and then summarize the current strategies adopted for manipulating IPP and DMAPP supply. At last, how to further manage IPP and DMAPP supply to improve terpenoid biosynthesis is also proposed.

Keywords

Terpenoid / Mevalonate pathway / d-erythritol 4-phosphate (MEP)')">2-C-Methyl-d-erythritol 4-phosphate (MEP) / Isopentenyl diphosphate (IPP) / Dimethylallyl diphosphate (DMAPP) / Biosynthesis

Cite this article

Download citation ▾
Qin Wang, Shu Quan, Han Xiao. Towards efficient terpenoid biosynthesis: manipulating IPP and DMAPP supply. Bioresources and Bioprocessing, 2019, 6(1): 6 DOI:10.1186/s40643-019-0242-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aharoni A, Giri AP, Verstappen FW, Bertea CM, Sevenier R, Sun Z, Jongsma MA, Schwab W, Bouwmeester HJ. Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell, 2004, 16(11): 3110-3131.

[2]

Ajikumar PK, Tyo K, Carlsen S, Mucha O, Phon TH, Stephanopoulos G. Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms. Mol Pharm, 2008, 5(2): 167-190.

[3]

Alcalde E, Fraser PD. Extending our tools and resources in the non-conventional industrial yeast Xanthophyllomyces dendrorhous through the application of metabolite profiling methodologies. Metabolomics, 2018, 14(3): 30.

[4]

Alonso-Gutierrez J, Chan R, Batth TS, Adams PD, Keasling JD, Petzold CJ, Lee TS. Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab Eng, 2013, 19: 33-41.

[5]

Anthony JR, Anthony LC, Nowroozi F, Kwon G, Newman JD, Keasling JD. Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene. Metab Eng, 2009, 11(1): 13-19.

[6]

Asaph A, Giri AP, Stephan D, Frans G, Willem-Jan DK, Verstappen FWA, Verhoeven HA, Jongsma MA, Wilfried S, Bouwmeester HJ. Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell, 2003, 15(12): 2866.

[7]

Bach TJ. Hydroxymethylglutaryl-CoA reductase, a key enzyme in phytosterol synthesis?. Lipids, 1986, 21(1): 82-88.

[8]

Bach TJ, Lichtenthaler HK. Inhibition by mevinolin of plant growth, sterol formation and pigment accumulation. Physiol Plant, 2010, 59(1): 50-60.

[9]

Banerjee A, Preiser AL, Sharkey TD. Engineering of recombinant poplar deoxy-d-xylulose-5-phosphate synthase (PtDXS) by site-directed mutagenesis improves its activity. PLoS ONE, 2016, 11(8): e0161534.

[10]

Bian G, Deng Z, Liu T. Strategies for terpenoid overproduction and new terpenoid discovery. Curr Opin Biotechnol, 2017, 48: 234-241.

[11]

Bick JA, Lange BM. Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane. Arch Biochem Biophys, 2003, 415(2): 146-154.

[12]

Bochar DA, Friesen JA, Stauffacher CV, Rodwell VW. Barton SD, Nakanishi K, Meth-Cohn O. Biosynthesis of mevalonic acid from acetyl-CoA. Comprehensive natural products chemistry, 1999, London: Elsevier.

[13]

Boiteux A, Markus M, Plesser T, Hess B, Malcovati M. Analysis of progress curves. Interaction of pyruvate kinase from Escherichia coli with fructose 1,6-bisphosphate and calcium ions. Biochem J, 1983, 211(3): 631-640.

[14]

Botella-Pavia P, Besumbes O, Phillips MA, Carretero-Paulet L, Boronat A, Rodriguez-Concepcion M. Regulation of carotenoid biosynthesis in plants: evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoid precursors. Plant J, 2004, 40(2): 188-199.

[15]

Boucher Y, Doolittle WF. The role of lateral gene transfer in the evolution of isoprenoid biosynthesis pathways. Mol Microbiol, 2000, 37(4): 703-716.

[16]

Bouvier F, Suire C, d’Harlingue A, Backhaus RA, Camara B. Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells. Plant J, 2000, 24(2): 241-252.

[17]

Braithwaite GD, Goodwin TW. Studies in carotenogenesis. 25. The incorporation of [1-14C] acetate, [2-14C] acetate and 14CO2 into lycopene by tomato slices. Biochem J, 1960, 76: 1-5.

[18]

Braithwaite GD, Goodwin TW. Studies in carotenogenesis. 27. Incorporation of [2-14C] acetate, dl-[2-14C] mevalonate and 14CO2 into carrotroot preparations. Biochem J, 1960, 76: 194-197.

[19]

Carlsen S, Ajikumar PK, Formenti LR, Zhou K, Phon TH, Nielsen ML, Lantz AE, Kielland-Brandt MC, Stephanopoulos G. Heterologous expression and characterization of bacterial 2-C-methyl-d-erythritol 4-phosphate pathway in Saccharomyces cerevisiae. Appl Microbiol Biotechnol, 2013, 97(13): 5753-5769.

[20]

Carretero-Paulet L, Ahumada I, Cunillera N, Rodriguez-Concepcion M, Ferrer A, Boronat A, Campos N. Expression and molecular analysis of the Arabidopsis DXR gene encoding 1-deoxy-d-xylulose 5-phosphate reductoisomerase, the first committed enzyme of the 2-C-methyl-d-erythritol 4-phosphate pathway. Plant Physiol, 2002, 129(4): 1581-1591.

[21]

Carter OA, Peters RJ, Croteau R. Monoterpene biosynthesis pathway construction in Escherichia coli. Phytochemistry, 2003, 64(2): 425-433.

[22]

Chappell J, Wolf F, Proulx J, Cuellar R, Saunders C. Is the reaction catalyzed by 3-hydroxy-3-methylglutaryl coenzyme A reductase a rate-limiting step for isoprenoid biosynthesis in plants?. Plant Physiol, 1995, 109(4): 1337-1343.

[23]

Chun KT, Bar-Nun S, Simoni RD. The regulated degradation of 3-hydroxy-3-methylglutaryl-CoA reductase requires a short-lived protein and occurs in the endoplasmic reticulum. J Biol Chem, 1990, 265(35): 22004-22010.

[24]

Clark DP. The fermentation pathways of Escherichia coli. FEMS Microbiol Rev, 1989, 5(3): 223-234.

[25]

Connolly JD, Hill RA. Dictionary of terpenoids, 1991, London: Chapman and Hall

[26]

Cordoba E, Salmi M, Leon P. Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants. J Exp Bot, 2009, 60(10): 2933-2943.

[27]

Dahl RH, Zhang F, Alonso-Gutierrez J, Baidoo E, Batth TS, Redding-Johanson AM, Petzold CJ, Mukhopadhyay A, Lee TS, Adams PD, Keasling JD. Engineering dynamic pathway regulation using stress-response promoters. Nat Biotechnol, 2013, 31(11): 1039-1046.

[28]

Dellas N, Thomas ST, Manning G, Noel JP. Discovery of a metabolic alternative to the classical mevalonate pathway. Elife, 2013, 2: e00672.

[29]

Dudareva N, Andersson S, Orlova I, Gatto N, Reichelt M, Rhodes D, Boland W, Gershenzon J. The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc Natl Acad Sci USA, 2005, 102(3): 933-938.

[30]

Dugar D, Stephanopoulos G. Relative potential of biosynthetic pathways for biofuels and bio-based products. Nat Biotechnol, 2011, 29(12): 1074-1078.

[31]

Dunn CA, O’Handley SF, Frick DN, Bessman MJ. Studies on the ADP-ribose pyrophosphatase subfamily of the nudix hydrolases and tentative identification of trgB, a gene associated with tellurite resistance. J Biol Chem, 1999, 274(45): 32318-32324.

[32]

Enfissi EM, Fraser PD, Lois LM, Boronat A, Schuch W, Bramley PM. Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoids in tomato. Plant Biotechnol J, 2005, 3(1): 17-27.

[33]

Enjuto M, Balcells L, Campos N, Caelles C, Arro M, Boronat A. Arabidopsis thaliana contains two differentially expressed 3-hydroxy-3-methylglutaryl-CoA reductase genes, which encode microsomal forms of the enzyme. Proc Natl Acad Sci USA, 1994, 91(3): 927-931.

[34]

Erb TJ, Evans BS, Cho K, Warlick BP, Sriram J, Wood MK, Imker HJ, Sweedler JV, Tabita FR, Gerlt JA, Erb T, . A RubisCO-like protein links SAM metabolism with isoprenoid biosynthesis. Nat Chem Biol, 2012, 8(11): 926-932.

[35]

Estevez JM, Cantero A, Reindl A, Reichler S, Leon P. 1-Deoxy-d-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J Biol Chem, 2001, 276(25): 22901-22909.

[36]

Farmer WR, Liao JC. Precursor balancing for metabolic engineering of lycopene production in Escherichia coli. Biotechnol Prog, 2001, 17(1): 57-61.

[37]

Felix R, Stefan H, Katrin GR, Petra A, Cornelia K, Sabine A, Duilio A, Adelbert B, Wolfgang E. Studies on the nonmevalonate terpene biosynthetic pathway: metabolic role of IspH (LytB) protein. Proc Natl Acad Sci USA, 2002, 99(3): 1158-1163.

[38]

Fitzpatrick AH, Bhandari J, Crowell DN. Farnesol kinase is involved in farnesol metabolism, ABA signaling and flower development in Arabidopsis. Plant J, 2011, 66(6): 1078-1088.

[39]

Formighieri C, Melis A. Carbon partitioning to the terpenoid biosynthetic pathway enables heterologous β-phellandrene production in Escherichia coli cultures. Arch Microbiol, 2014, 196(12): 853-861.

[40]

Geerse RH, van der Pluijm J, Postma PW. The repressor of the PEP: fructose phosphotransferase system is required for the transcription of the pps gene of Escherichia coli. Mol Gen Genet, 1989, 218(2): 348-352.

[41]

George KW, Chen A, Jain A, Batth TS, Baidoo EE, Wang G, Adams PD, Petzold CJ, Keasling JD, Lee TS. Correlation analysis of targeted proteins and metabolites to assess and engineer microbial isopentenol production. Biotechnol Bioeng, 2014, 111(8): 1648-1658.

[42]

George KW, Thompson MG, Kang A, Baidoo E, Wang G, Chan LJ, Adams PD, Petzold CJ, Keasling JD, Lee TS. Metabolic engineering for the high-yield production of isoprenoid-based C(5) alcohols in E. coli. Sci Rep, 2015, 5: 11128.

[43]

George KW, Thompson MG, Kim J, Baidoo EEK, Wang G, Benites VT, Petzold CJ, Chan LJG, Yilmaz S, Turhanen P, Adams PD, Keasling JD, Lee TS. Integrated analysis of isopentenyl pyrophosphate (IPP) toxicity in isoprenoid-producing Escherichia coli. Metab Eng, 2018, 47: 60-72.

[44]

Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature, 1990, 343(6257): 425-430.

[45]

Goodwin TW. Studies in carotenogenesis. 25. The incorporation of 14CO2, [2-14C] acetate and [2-14C]mevalonate into β-carotene by illuminated etiolated maize seedings. Biochem J, 1958, 70(4): 612-617.

[46]

Grawert T, Kaiser J, Zepeck F, Laupitz R, Hecht S, Amslinger S, Schramek N, Schleicher E, Weber S, Haslbeck M, Buchner J, Rieder C, Arigoni D, Bacher A, Eisenreich W, Rohdich F. IspH protein of Escherichia coli: studies on iron-sulfur cluster implementation and catalysis. J Am Chem Soc, 2004, 126(40): 12847-12855.

[47]

Grochowski LL, Xu H, White RH. Methanocaldococcus jannaschii uses a modified mevalonate pathway for biosynthesis of isopentenyl diphosphate. J Bacteriol, 2006, 188(9): 3192-3198.

[48]

Gutensohn M, Orlova I, Nguyen TT, Davidovich-Rikanati R, Ferruzzi MG, Sitrit Y, Lewinsohn E, Pichersky E, Dudareva N. Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits. Plant J, 2013, 75(3): 351-363.

[49]

Hahn FM, Hurlburt AP, Poulter CD. Escherichia coli open reading frame 696 is idi, a nonessential gene encoding isopentenyl diphosphate isomerase. J Bacteriol, 1999, 181(15): 4499-4504.

[50]

Hampton RY, Rine J. Regulated degradation of HMG-CoA reductase, an integral membrane protein of the endoplasmic reticulum, in yeast. J Cell Biol, 1994, 125(2): 299-312.

[51]

Hans J, Hause B, Strack D, Walter MH. Cloning, characterization, and immunolocalization of a mycorrhiza-inducible 1-deoxy-d-xylulose 5-phosphate reductoisomerase in arbuscule-containing cells of maize. Plant Physiol, 2004, 134(2): 614-624.

[52]

Harada H, Misawa N. Novel approach in the biosynthesis of functional carotenoids in Escherichia coli. Methods Mol Biol, 2012, 892(1): 33-141.

[53]

Hedl M, Tabernero L, Stauffacher CV, Rodwell VW. Class II 3-hydroxy-3-methylglutaryl coenzyme A reductases. J Bacteriol, 2004, 186(7): 1927-1932.

[54]

Hemmerlin A, Hoeffler JF, Meyer O, Tritsch D, Kagan IA, Grosdemange-Billiard C, Rohmer M, Bach TJ. Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J Biol Chem, 2003, 278(29): 26666-26676.

[55]

Hemmerlin A, Gerber E, Feldtrauer JF, Wentzinger L, Hartmann MA, Tritsch D, Hoeffler JF, Rohmer M, Bach TJ. A review of tobacco BY-2 cells as an excellent system to study the synthesis and function of sterols and other isoprenoids. Lipids, 2004, 39(8): 723-735.

[56]

Hemmerlin A, Harwood JL, Bach TJ. A raison d’etre for two distinct pathways in the early steps of plant isoprenoid biosynthesis?. Prog Lipid Res, 2012, 51(2): 95-148.

[57]

Henry LK, Gutensohn M, Thomas ST, Noel JP, Dudareva N. Orthologs of the archaeal isopentenyl phosphate kinase regulate terpenoid production in plants. Proc Natl Acad Sci USA, 2015, 112(32): 10050-10055.

[58]

Henry LK, Thomas ST, Widhalm JR, Lynch JH, Davis TC, Kessler SA, Bohlmann J, Noel JP, Dudareva N. Contribution of isopentenyl phosphate to plant terpenoid metabolism. Nat Plants, 2018, 4(9): 721-729.

[59]

Herz S, Wungsintaweekul J, Schuhr CA, Hecht S, Luttgen H, Sagner S, Fellermeier M, Eisenreich W, Zenk MH, Bacher A, Rohdich F. Biosynthesis of terpenoids: YgbB protein converts 4-diphosphocytidyl-2C-methyl-d-erythritol 2-phosphate to 2C-methyl-d-erythritol 2,4-cyclodiphosphate. Proc Natl Acad Sci USA, 2000, 97(6): 2486-2490.

[60]

Holmberg N, Harker M, Wallace AD, Clayton JC, Gibbard CL, Safford R. Co-expression of N-terminal truncated 3-hydroxy-3-methylglutaryl CoA reductase and C24-sterol methyltransferase type 1 in transgenic tobacco enhances carbon flux towards end-product sterols. Plant J, 2003, 36(1): 12-20.

[61]

Hsieh MH, Goodman HM. The Arabidopsis IspH homolog is involved in the plastid nonmevalonate pathway of isoprenoid biosynthesis. Plant Physiol, 2005, 138(2): 641-653.

[62]

Ignea C, Cvetkvoic I, Loupassaki S, Kefalas P, Johnson CB, Kampranis SC, Makris AM. Improving yeast strains using recyclable integration cassettes, for the prodction of plant terpenoids. Microb Cell Fact, 2011, 10: 4.

[63]

Imker HJ, Singh J, Warlick BP, Tabita FR, Gerlt JA. Mechanistic diversity in the RubisCO superfamily: a novel isomerization reaction catalyzed by the RuBisCO-Like protein from Rhodospirillum rubrum. Biochemistry, 2008, 47(43): 11171.

[64]

Immethun CM, Hoynes-O’Connor AG, Balassy A, Moon TS. Microbial production of isoprenoids enabled by synthetic biology. Front Microbiol, 2013, 4: 75.

[65]

Kai G, Xu H, Zhou C, Liao P, Xiao J, Luo X, You L, Zhang L. Metabolic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. Metab Eng, 2011, 13(3): 319-327.

[66]

Kaneda K, Kuzuyama T, Takagi M, Hayakawa Y, Seto H. An unusual isopentenyl diphosphate isomerase found in the mevalonate pathway gene cluster from Streptomyces sp. strain CL190. Proc Natl Acad Sci USA, 2001, 98(3): 932-937.

[67]

Kang A, George KW, Wang G, Baidoo E, Keasling JD, Lee TS. Isopentenyl diphosphate (IPP)-bypass mevalonate pathways for isopentenol production. Metab Eng, 2016, 34: 25-35.

[68]

Karine B, Yannick E, Alain D, Frédéric P. Isopentenyl diphosphate isomerase: a checkpoint to isoprenoid biosynthesis. Biochimie, 2012, 94(8): 1621-1634.

[69]

Kasahara H, Hanada A, Kuzuyama T, Takagi M, Kamiya Y, Yamaguchi S. Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis. J Biol Chem, 2002, 277(47): 45188-45194.

[70]

Kim SJ, Kim MD, Choi JH, Kim SY, Ryu YW, Seo JH. Amplification of 1-deoxy-d-xyluose 5-phosphate (DXP) synthase level increases coenzyme Q10 production in recombinant Escherichia coli. Appl Microbiol Biotechnol, 2006, 72(5): 982-985.

[71]

Kim YK, Kim JK, Kim YB, Lee S, Kim SU, Park SU. Enhanced accumulation of phytosterol and triterpene in hairy root cultures of Platycodon grandiflorum by overexpression of Panax ginseng 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J Agric Food Chem, 2013, 61(8): 1928-1934.

[72]

Kirby J, Dietzel KL, Wichmann G, Chan R, Antipov E, Moss N, Baidoo EEK, Jackson P, Gaucher SP, Gottlieb S, LaBarge J, Mahatdejkul T, Hawkins KM, Muley S, Newman JD, Liu P, Keasling JD, Zhao L. Engineering a functional 1-deoxy-d-xylulose 5-phosphate (DXP) pathway in Saccharomyces cerevisiae. Metab Eng, 2016, 38: 494-503.

[73]

Kuzuyama TTS, Watanabe H, Seto H. Direct formation of 2-C-methyl-d-erythritol 4-phosphate from 1-deoxy-d-xylulose 5-phosphate by 1-deoxy-d-xylulose 5-phosphate reductisomerase, a new enzyme in the non-mevalonate pathway to isopentenyl diphosphate. Tetrahedron Lett, 1998, 39(25): 4509-4512.

[74]

Kuzuyama T, Takagi M, Takahashi S, Seto H. Cloning and characterization of 1-deoxy-d-xylulose 5-phosphate synthase from Streptomyces sp. strain CL190, which uses both the mevalonate and nonmevalonate pathways for isopentenyl diphosphate biosynthesis. J Bacteriol, 2000, 182(4): 891-897.

[75]

Laby RJ, Kincaid MS, Kim D, Gibson SI. The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. Plant J, 2000, 23(5): 587-596.

[76]

Lange BM, Rujan T, Martin W, Croteau R. Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci USA, 2000, 97(24): 13172-13177.

[77]

Laskovics FM, Poulter CD. Prenyltransferase; determination of the binding mechanism and individual kinetic constants for farnesylpyrophosphate synthetase by rapid quench and isotope partitioning experiments. Biochemistry, 1981, 20(7): 1893-1901.

[78]

Laule O, Furholz A, Chang HS, Zhu T, Wang X, Heifetz PB, Gruissem W, Lange M. Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2003, 100(11): 6866-6871.

[79]

Learned RM. Light suppresses 3-Hydroxy-3-methylglutaryl coenzyme A reductase gene expression in Arabidopsis thaliana. Plant Physiol, 1996, 110(2): 645-655.

[80]

Leivar P, Antolin-Llovera M, Ferrero S, Closa M, Arro M, Ferrer A, Boronat A, Campos N. Multilevel control of Arabidopsis 3-hydroxy-3-methylglutaryl coenzyme A reductase by protein phosphatase 2A. Plant Cell, 2011, 23(4): 1494-1511.

[81]

Leonard E, Ajikumar PK, Thayer K, Xiao WH, Mo JD, Tidor B, Stephanopoulos G, Prather KL. Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. Proc Natl Acad Sci USA, 2010, 107(31): 13654-13659.

[82]

Li Z, Ji J, Wang G, Josine TL, Wu J, Diao J, Wu W, Guan C. Cloning and heterologous expression of isopentenyl diphosphate isomerase gene from Lycium chinense. J Plant Biochem Biotechnol, 2016, 25(1): 40-48.

[83]

Liao P, Wang H, Hemmerlin A, Nagegowda DA, Bach TJ, Wang M, Chye ML. Past achievements, current status and future perspectives of studies on 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS) in the mevalonate (MVA) pathway. Plant Cell Rep, 2014, 33(7): 1005-1022.

[84]

Liao P, Hemmerlin A, Bach TJ, Chye ML. The potential of the mevalonate pathway for enhanced isoprenoid production. Biotechnol Adv, 2016, 34(5): 697-713.

[85]

Liao P, Chen X, Wang M, Bach TJ, Chye ML. Improved fruit alpha-tocopherol, carotenoid, squalene and phytosterol contents through manipulation of Brassica juncea 3-hydroxy-3-methylglutaryl-CoA synthase 1 in transgenic tomato. Plant Biotechnol J, 2018, 16(3): 784-796.

[86]

Lichtenthaler HK. The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50(50): 47-65.

[87]

Lichtenthaler HK, Bach TJ, Wellburn AR. Wintermans JFGM, Kuiper P. Cytoplasmic and plastidic isoprenoid compounds of oat seedlings and their distinct labeling from 14C-mevalonate. Biochemistry and metabolism of plant lipids, 1982, Amsterdam: Elsevier.

[88]

Lichtenthaler HK, Rohmer M, Schwender J. Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiol Plant, 1997, 101(3): 643-652.

[89]

Little HN, Bloch K. Studies on the utilization of acetic acid for the biological synthesis of cholesterol. J Biol Chem, 1950, 183(1): 33-46.

[90]

Liu H, Sun Y, Ramos KRM, Nisola GM, Valdehuesa KNG, Lee WK, Park SJ, Chung WJ. Combination of Entner–Doudoroff pathway with MEP increases isoprene production in engineered Escherichia coli. PLoS ONE, 2013, 8(12): e83290.

[91]

Luthra R, Luthra PM, Kumar S. Redefined role of mevalonate-isoprenoid pathway in terpenoid biosynthesis in higher plants. Curr Sci, 1999, 76(2): 133-135.

[92]

Lutke-Brinkhaus F, Kleinig H. Formation of isopentenyl diphosphate via mevalonate does not occur within etioplasts and etiochloroplasts of mustard (Sinapis alba L.) seedlings. Planta, 1987, 171(3): 406-411.

[93]

Lv X, Gu J, Wang F, Xie W, Liu M, Ye L, Yu H. Combinatorial pathway optimization in Escherichia coli by directed co-evolution of rate-limiting enzymes and modular pathway engineering. Biotechnol Bioeng, 2016, 113(12): 2661-2669.

[94]

Ma SM, Garcia DE, Redding-Johanson AM, Friedland GD, Chan R, Batth TS, Haliburton JR, Chivian D, Keasling JD, Petzold CJ, Lee TS, Chhabra SR. Optimization of a heterologous mevalonate pathway through the use of variant HMG-CoA reductases. Metab Eng, 2011, 13(5): 588-597.

[95]

Ma D, Li G, Zhu Y, Xie DY. Overexpression and suppression of Artemisia annua 4-hydroxy-3-methylbut-2-enyl diphosphate reductase 1 gene (AaHDR1) differentially regulate artemisinin and terpenoid biosynthesis. Front Plant Sci, 2017, 8: 77.

[96]

Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol, 2003, 21(7): 796-802.

[97]

Martinez-Esteso MJ, Martinez-Marquez A, Selles-Marchart S, Morante-Carriel JA, Bru-Martinez R. The role of proteomics in progressing insights into plant secondary metabolism. Front Plant Sci, 2015, 6: 504.

[98]

Mcgarvey DJ, Croteau R. Terpenoid metabolism. Plant Cell, 1995, 7(7): 1015-1026.

[99]

Mendoza-Poudereux I, Kutzner E, Huber C, Segura J, Eisenreich W, Arrillaga I. Metabolic cross-talk between pathways of terpenoid backbone biosynthesis in spike lavender. Plant Physiol Biochem, 2015, 95: 113-120.

[100]

Mildvan AS, Xia Z, Azurmendi HF, Saraswat V, Legler PM, Massiah MA, Gabelli SB, Bianchet MA, Kang LW, Amzel LM. Structures and mechanisms of Nudix hydrolases. Arch Biochem Biophys, 2005, 433(1): 129-143.

[101]

Miller AR, North JA, Wildenthal JA, Tabita FR. Two distinct aerobic methionine salvage pathways generate volatile methanethiol in Rhodopseudomonas palustris. Mbio, 2018, 9(2): e00407-00418.

[102]

Munoz-Bertomeu J, Sales E, Ros R, Arrillaga I, Segura J. Up-regulation of an N-terminal truncated 3-hydroxy-3-methylglutaryl CoA reductase enhances production of essential oils and sterols in transgenic Lavandula latifolia. Plant Biotechnol J, 2007, 5(6): 746-758.

[103]

Nagegowda DA, Bach TJ, Chye ML. Brassica juncea 3-hydroxy-3-methylglutaryl (HMG)-CoA synthase 1: expression and characterization of recombinant wild-type and mutant enzymes. Biochem J, 2004, 383(Pt. 3): 517-527.

[104]

Newman JD, Marshall J, Chang M, Nowroozi F, Paradise E, Pitera D, Newman KL, Keasling JD. High-level production of amorpha-4,11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli. Biotechnol Bioeng, 2006, 95(4): 684-691.

[105]

Nishimura H, Azami Y, Miyagawa M, Hashimoto C, Yoshimura T, Hemmi H. Biochemical evidence supporting the presence of the classical mevalonate pathway in the thermoacidophilic archaeon Sulfolobus solfataricus. J Biochem, 2013, 153(5): 415-420.

[106]

Nowroozi FF, Baidoo EE, Ermakov S, Redding-Johanson AM, Batth TS, Petzold CJ, Keasling JD. Metabolic pathway optimization using ribosome binding site variants and combinatorial gene assembly. Appl Microbiol Biotechnol, 2014, 98(4): 1567-1581.

[107]

Partow S, Siewers V, Daviet L, Schalk M, Nielsen J. Reconstruction and evaluation of the synthetic bacterial MEP pathway in Saccharomyces cerevisiae. PLoS ONE, 2012, 7(12): e52498.

[108]

Piironen V, Lindsay DG, Miettinen TA, Toivo J, Lampi AM, Lindsay D, Clifford M. Plant sterols: biosynthesis, biological function and their importance to human nutrition. J Sci Food Agric, 2000, 80(7): 939-966.

[109]

Pitera DJ, Paddon CJ, Newman JD, Keasling JD. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng, 2007, 9(2): 193-207.

[110]

Polge C, Thomas M. SNF1/AMPK/SnRK1 kinases, global regulators at the heart of energy control?. Trends Plant Sci, 2007, 12(1): 20-28.

[111]

Pronk JT, Yde Steensma H, Van Dijken JP. Pyruvate metabolism in Saccharomyces cerevisiae. Yeast, 1996, 12(16): 1607-1633.

[112]

Ramseier TM, Negre D, Cortay JC, Scarabel M, Cozzone AJ, Saier MH Jr. In vitro binding of the pleiotropic transcriptional regulatory protein, FruR, to the fru, pps, ace, pts and icd operons of Escherichia coli and Salmonella typhimurium. J Mol Biol, 1993, 234(1): 28-44.

[113]

Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 2006, 440(7086): 940-943.

[114]

Rodríguez-Concepción M. Early Steps in Isoprenoid Biosynthesis: multilevel regulation of the supply of common precursors in plant cells. Phytochem Rev, 2006, 5(1): 1-15.

[115]

Rodriguez-Concepcion M, Boronat A. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol, 2002, 130(3): 1079-1089.

[116]

Rohmer M. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep, 1999, 16(5): 565-574.

[117]

Rohmer M, Knani M, Simonin P, Sutter B, Sahm H. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J, 1993, 295(Pt 2): 517-524.

[118]

Romano AH, Conway T. Evolution of carbohydrate metabolic pathways. Res Microbiol, 1996, 147(6–7): 448-455.

[119]

Schrader J, Bohlmann J. Biotechnology of Isoprenoids, 2015, Swizerland: Springer

[120]

Schwender J, Seemann M, Lichtenthaler HK, Rohmer M. Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem J, 1996, 316(Pt 1): 73-80.

[121]

Seemann M, Rohmer M. Isoprenoid biosynthesis via the methylerythritol phosphate pathway: GcpE and LytB, two novel iron–sulphur proteins. C R Chim, 2007, 10(8): 748-755.

[122]

Shi M, Luo X, Ju G, Yu X, Hao X, Huang Q, Xiao J, Cui L, Kai G. Increased accumulation of the cardio-cerebrovascular disease treatment drug tanshinone in Salvia miltiorrhiza hairy roots by the enzymes 3-hydroxy-3-methylglutaryl CoA reductase and 1-deoxy-d-xylulose 5-phosphate reductoisomerase. Funct Integr Genomics, 2014, 14(3): 603-615.

[123]

Shiba Y, Paradise EM, Kirby J, Ro DK, Keasling JD. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab Eng, 2007, 9(2): 160-168.

[124]

Sivy TL, Fall R, Rosenstiel TN. Evidence of isoprenoid precursor toxicity in Bacillus subtilis. Biosci Biotechnol Biochem, 2011, 75(12): 2376-2383.

[125]

Stermer BA, Bostock RM. Involvement of 3-hydroxy-3-methylglutaryl coenzyme a reductase in the regulation of sesquiterpenoid phytoalexin synthesis in potato. Plant Physiol, 1987, 84(2): 404-408.

[126]

Stermer BA, Bianchini GM, Korth KL. Regulation of HMG-CoA reductase activity in plants. J Lipid Res, 1994, 35(7): 1133-1140.

[127]

Sugden C, Donaghy PG, Halford NG, Hardie DG. Two SNF1-related protein kinases from spinach leaf phosphorylate and inactivate 3-hydroxy-3-methylglutaryl-coenzyme A reductase, nitrate reductase, and sucrose phosphate synthase in vitro. Plant Physiol, 1999, 120(1): 257-274.

[128]

Sun Z, Cunningham FX Jr, Gantt E. Differential expression of two isopentenyl pyrophosphate isomerases and enhanced carotenoid accumulation in a unicellular chlorophyte. Proc Natl Acad Sci USA, 1998, 95(19): 11482-11488.

[129]

Tarkowska D, Strnad M. Isoprenoid-derived plant signaling molecules: biosynthesis and biological importance. Planta, 2018, 247(5): 1051-1066.

[130]

Tholl D. Biosynthesis and biological functions of terpenoids in plants. Adv Biochem Eng Biotechnol, 2015, 148: 63-106.

[131]

Tippmann S, Chen Y, Siewers V, Nielsen J. From flavors and pharmaceuticals to advanced biofuels: production of isoprenoids in Saccharomyces cerevisiae. Biotechnol J, 2013, 8(12): 1435-1444.

[132]

Tsuruta H, Paddon CJ, Eng D, Lenihan JR, Horning T, Anthony LC, Regentin R, Keasling JD, Renninger NS, Newman JD. High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, Escherichia coli. PLoS ONE, 2009, 4(2): e4489.

[133]

Vadali RV, Fu Y, Bennett GN, San KY. Enhanced lycopene productivity by manipulation of carbon flow to isopentenyl diphosphate in Escherichia coli. Biotechnol Prog, 2005, 21(5): 1558-1561.

[134]

van Herpen TW, Cankar K, Nogueira M, Bosch D, Bouwmeester HJ, Beekwilder J. Nicotiana benthamiana as a production platform for artemisinin precursors. PLoS ONE, 2010, 5(12): e14222.

[135]

Vannice JC, Skaff DA, Keightley A, Addo JK, Wyckoff GJ, Miziorko HM. Identification in Haloferax volcanii of phosphomevalonate decarboxylase and isopentenyl phosphate kinase as catalysts of the terminal enzyme reactions in an archaeal alternate mevalonate pathway. J Bacteriol, 2014, 196(5): 1055-1063.

[136]

Vickery CR, La Clair JJ, Burkart MD, Noel JP. Harvesting the biosynthetic machineries that cultivate a variety of indispensable plant natural products. Curr Opin Chem Biol, 2016, 31: 66-73.

[137]

Vinokur JM, Korman TP, Cao Z, Bowie JU. Evidence of a novel mevalonate pathway in archaea. Biochemistry, 2014, 53(25): 4161-4168.

[138]

Wang F, Lv X, Xie W, Zhou P, Zhu Y, Yao Z, Yang C, Yang X, Ye L, Yu H. Combining gal4p-mediated expression enhancement and directed evolution of isoprene synthase to improve isoprene production in Saccharomyces cerevisiae. Metab Eng, 2017, 39: 257-266.

[139]

Waygood EB, Mort JS, Sanwal BD. The control of pyruvate kinase of Escherichia coli. Binding of substrate and allosteric effectors to the enzyme activated by fructose 1,6-bisphosphate. Biochemistry, 1976, 15(2): 277-282.

[140]

Withers ST, Gottlieb SS, Lieu B, Newman JD, Keasling JD. Identification of isopentenol biosynthetic genes from Bacillus subtilis by a screening method based on isoprenoid precursor toxicity. Appl Environ Microbiol, 2007, 73(19): 6277-6283.

[141]

Xiao Y, Chu L, Sanakis Y, Liu P. Revisiting the IspH catalytic system in the deoxyxylulose phosphate pathway: achieving high activity. J Am Chem Soc, 2009, 131(29): 9931-9933.

[142]

Yang J, Guo L. Biosynthesis of beta-carotene in engineered E. coli using the MEP and MVA pathways. Microb Cell Fact, 2014, 13: 160.

[143]

Yang C, Gao X, Jiang Y, Sun B, Gao F, Yang S. Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli. Metab Eng, 2016, 37: 79-91.

[144]

Yoon SH, Kim JE, Lee SH, Park HM, Choi MS, Kim JY, Lee SH, Shin YC, Keasling JD, Kim SW. Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis. Appl Microbiol Biotechnol, 2007, 74(1): 131-139.

[145]

Yoon SH, Lee SH, Das A, Ryu HK, Jang HJ, Kim JY, Oh DK, Keasling JD, Kim SW. Combinatorial expression of bacterial whole mevalonate pathway for the production of β-carotene in E. coli. J Biotechnol, 2009, 140(3–4): 218-226.

[146]

You S, Yin Q, Zhang J, Zhang C, Qi W, Gao L, Tao Z, Su R, He Z. Utilization of biodiesel by-product as substrate for high-production of β-farnesene via relatively balanced mevalonate pathway in Escherichia coli. Bioresour Technol, 2017, 243: 228-236.

[147]

Zepeck F, Grawert T, Kaiser J, Schramek N, Eisenreich W, Bacher A, Rohdich F. Biosynthesis of isoprenoids purification and properties of IspG protein from Escherichia coli. J Org Chem, 2005, 70(23): 9168-9174.

[148]

Zhao Y, Yang J, Qin B, Li Y, Sun Y, Su S, Xian M. Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway. Appl Microbiol Biotechnol, 2011, 90(6): 1915-1922.

[149]

Zurbriggen A, Kirst H, Melis A. Isoprene production via the mevalonic acid pathway in Escherichia coli (Bacteria). BioEnergy Res, 2012, 5(4): 814-828.

Funding

National Natural Science Foundation of China(31600071)

Natural Science Foundation of Shanghai(17ZR1448900)

State Key Laboratory of Bioreactor Engineering

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/