Integration of biology, ecology and engineering for sustainable algal-based biofuel and bioproduct biorefinery
James Allen , Serpil Unlu , Yaşar Demirel , Paul Black , Wayne Riekhof
Bioresources and Bioprocessing ›› 2018, Vol. 5 ›› Issue (1) : 47
Integration of biology, ecology and engineering for sustainable algal-based biofuel and bioproduct biorefinery
Despite years of concerted research efforts, an industrial-scale technology has yet to emerge for production and conversion of algal biomass into biofuels and bioproducts. The objective of this review is to explore the ways of possible integration of biology, ecology and engineering for sustainable large algal cultivation and biofuel production systems. Beside the costs of nutrients, such as nitrogen and phosphorous, and fresh water, upstream technologies which are not ready for commercialization both impede economic feasibility and conflict with the ecological benefits in the sector. Focusing mainly on the engineering side of chemical conversion of algae to biodiesel has also become obstacle. However, to reduce the costs, one potential strategy has been progressing steadily to synergistically link algal aquaculture to the governmentally mandated reduction of nitrogen and phosphorous concentrations in municipal wastewater. Recent research also supports the suppositions of scalability and cost reduction. Noticeably, less is known of the economic impact of conversion of the whole algae-based biorefinery sector with additional biochemical and thermochemical processes and integration with ecological constraints. This review finds that a biorefinery approach with integrated biology, ecology, and engineering could lead to a feasible algal-based technology for variety of biofuels and bioproducts.
Biofuel / Bioproduct / Cultivation / Harvesting / Conversion processes / Ecology / Municipal wastewater / EROI / Sustainability
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
Belson NA (2016) Derisking: a strategy for growing the biobased economy [WWW Document]. https://www.biofuelsdigest.com/bdigest/2016/10/24/derisking-a-strategy-for-growing-the-biobased-economy/ |
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
US Congress (2007) Energy independence and security act of 2007. Public Law 1–311. https://doi.org/papers2://publication/uuid/364DB882-E966-450B-959F-AEAD6E702F42 |
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
Demirel Y (2018b) Biofuels. In: Comprehensive energy systems. Elsevier, New York, pp 875–908. https://doi.org/10.1016/B978-0-12-809597-3.00125-5 |
| [41] |
|
| [42] |
|
| [43] |
Energy Department. Annual energy outlook 2010: with projections to 2035, 2010, Washington: Government Printing Office. |
| [44] |
|
| [45] |
Ferrell J, Sarisky-Reed V (2010) National algal biofuels technology roadmap. US Dept. Energy 140. Public Law No.106-554 |
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
National Research Council. Renewable fuel standard: potential economic and environmental effects of US biofuel policy, 2012, Washington: National Academies Press, 2012. |
| [94] |
National Research Council. Sustainable development of algal biofuels in the United States, 2012, Washington: National Academies Press |
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
|
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
|
| [122] |
|
| [123] |
|
| [124] |
|
| [125] |
|
| [126] |
|
| [127] |
|
| [128] |
|
| [129] |
|
| [130] |
Suarsini E, Subandi (2011) Utilization ultrasonic to increase the efficiency of oil extraction for microalgae indigenous isolates from pond gresik, east java. In: 2011 IEEE conference on clean energy and technology (CET). IEEE, New York. pp. 275–279. https://doi.org/10.1109/CET.2011.6041496 |
| [131] |
|
| [132] |
Toor S, Reddy, H, Deng S, Hoffmann J, Holm-Nielsen JB, Rosendahl L (2013) Hydrothermal liquefaction of microalgae’s for bio oil production. www.forskningsdatabasen.dk/en/catalog/2389364184 |
| [133] |
|
| [134] |
|
| [135] |
|
| [136] |
|
| [137] |
|
| [138] |
|
| [139] |
|
| [140] |
|
| [141] |
|
| [142] |
|
| [143] |
|
| [144] |
|
| [145] |
|
/
| 〈 |
|
〉 |