Novel application and industrial exploitation of winery by-products
Efstathia Kalli , Iliada Lappa , Pavlos Bouchagier , Petros A. Tarantilis , Efstathia Skotti
Bioresources and Bioprocessing ›› 2018, Vol. 5 ›› Issue (1) : 46
Novel application and industrial exploitation of winery by-products
Grape is the largest fruit crop worldwide and the grape pomace is an important solid waste generated from pressing and fermentation processes in wine industries. Wine industry residues are rich in bioactive compounds and, in this case, the utilization of grape by-products for alternative uses has been a focus of research. The aim of the present project is to present the primary benefits of winemaking by-products to new products focusing on grape pomace, as well as to discover novel applications in food industry, cosmetics, pharmaceutical, agricultural, livestock fields and in energy recovery systems. Moreover, new green technologies for valuable components recovery will be summarized. Recognizing emerging technologies, researchers would have the opportunity to promote development of value-added products and high-quality applications in different markets and sectors recycling of winery by-products or even side streams. This study presents the main bioactive components of grape pomace, along with new current extraction pathways, targeting the decrease of negative environmental impact in parallel to functional added value applications.
Winery by-products / Grape pomace / Grape seed oil / Bioactive compound / Valorization / Green extraction technologies
| [1] |
|
| [2] |
Agricultural Utilization Research Institute. http://www.auri.org/wp-content/assets/legacy/research/Amino%20acid%20.pdf |
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
Arapoglou D, Israilides CJ, Bocari M, Scanlon B, Smith A (2002) A novel approach to grape waste treatment. In: Proceedings of the international conference protection and restoration of the environment VI, p 469 |
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
Corona G, Nicoletti G (2010) Renewable energy from the production residues of vineyards and wine evaluation of a business case. http://www.iamb.it/share/img_new_medit_articoli/321_41corona.pdf |
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
Environmental Protection Agency (EPA) (2015) International decontamination research and development conference. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-15/283 |
| [49] |
FAO—Food and Agriculture Organization of the United Nations (2014) http://faostat.fao.org/site339/default.aspx. Accessed 26 Sept 2016 |
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
Greek Wine Federation http://greekwinefederation.gr/gr/home/ |
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
https://www.fda.gov/food/ingredientspackaginglabeling/gras/scogs/ucm260874.htm |
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
Luguel C (2011) European Biorefinery Joint Strategic Research Roadmap for 2020 Strategic Targets for 2020—Collaboration Initiative on Biorefineries in Europe |
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
Mazza G, Pronyk C (2015). Pressurized low polarity water extraction. Apparatus and methods of use. Patent No. US 9084948 B2 |
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
|
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
|
| [122] |
|
| [123] |
|
| [124] |
|
| [125] |
|
| [126] |
|
| [127] |
|
| [128] |
|
| [129] |
|
| [130] |
|
| [131] |
|
| [132] |
|
| [133] |
|
| [134] |
|
| [135] |
|
| [136] |
Spingo G, Marinoni L, Garrido GD (2017) State of the art in grape processing by-products. In: Handbook of grape processing by-products: sustainable solutions, p.1 |
| [137] |
|
| [138] |
|
| [139] |
|
| [140] |
|
| [141] |
|
| [142] |
|
| [143] |
|
| [144] |
|
| [145] |
|
| [146] |
|
| [147] |
|
| [148] |
|
| [149] |
|
| [150] |
|
| [151] |
|
| [152] |
|
| [153] |
|
| [154] |
|
| [155] |
|
| [156] |
|
| [157] |
WHO. Nitrosodimethylamine (Concise International Chemical Assessment Document 38), 2002, Geneva: International Programme on Chemical Safety, World Health Organization. |
| [158] |
|
| [159] |
|
| [160] |
|
| [161] |
|
| [162] |
|
| [163] |
|
| [164] |
|
| [165] |
|
| [166] |
|
/
| 〈 |
|
〉 |