Construction of enhanced transcriptional activators for improving cellulase production in Trichoderma reesei RUT C30

Jiajia Zhang , Chuan Wu , Wei Wang , Wei Wang , Dongzhi Wei

Bioresources and Bioprocessing ›› 2018, Vol. 5 ›› Issue (1) : 40

PDF
Bioresources and Bioprocessing ›› 2018, Vol. 5 ›› Issue (1) : 40 DOI: 10.1186/s40643-018-0226-4
Research

Construction of enhanced transcriptional activators for improving cellulase production in Trichoderma reesei RUT C30

Author information +
History +
PDF

Abstract

Enhancing cellulase production in Trichoderma reesei is of great interest for an economical biorefinery. Artificial transcription factors are a potentially powerful molecular strategy for improving cellulase production in T. reesei. In this study, enhanced transcriptional activators XYR1VP, ACE2VP, and ACE1VP were constructed by linking the C terminus of XYR1, ACE2, or ACE1 with an activation domain of herpes simplex virus protein VP16. T. reesei transformants TXYR1VP, TACE2VP, and TACE1VP showed improved cellulase and/or xylanase production. TXYR1VP has a cellulase-free phenotype but with significantly elevated xylanase production. Xylanase I and xylanase II activities [U/(mg biomass)] increased by 51% and 80%, respectively, in TXYR1VP in comparison with parental strain RUT C30. The filter paper activity of TACE2VP in the Avicel-based medium increased by 52% compared to that of RUT C30. In the Avicel-based medium, TACE1VP manifested an 80% increase in FPase activity and a 50% increase in xylanase activity as compared to those of RUT C30. Additionally, when pretreated corn stover was hydrolyzed, crude enzymes produced from TACE1VP yielded a greater glucose release than did the enzymes produced by parental strain RUT C30.

Keywords

Enhanced transcriptional activator / Trichoderma reesei / Transcription factor / Cellulase / XYR1 / ACE2 / ACE1

Cite this article

Download citation ▾
Jiajia Zhang, Chuan Wu, Wei Wang, Wei Wang, Dongzhi Wei. Construction of enhanced transcriptional activators for improving cellulase production in Trichoderma reesei RUT C30. Bioresources and Bioprocessing, 2018, 5(1): 40 DOI:10.1186/s40643-018-0226-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akel E, Metz B, Seiboth B, Kubicek CP. Molecular regulation of arabinan and l-arabinose metabolism in Hypocrea jecorina (Trichoderma reesei). Eukaryot Cell, 2009, 8: 1837-1844.

[2]

Aro N, Saloheimo A, Ilmén M, Penttilä M. ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. J Biol Chem, 2001, 276(26): 24309-24314.

[3]

Aro N, Ilmén M, Saloheimo A, Penttilä M. ACEI of Trichoderma reesei is a repressor of cellulase and xylanase expression. Appl Environ Microb, 2003, 69(1): 56-65.

[4]

Biddy MJ, Davis R, Humbird D, Tao L, Dowe N, Guarnieri MT, Linger JG, Karp EM, Salvachúa D, Vardon DR, Beckham GT. The techno-economic basis for coproduct manufacturing to enable hydrocarbon fuel production from lignocellulosic biomass. ACS Sustain Chem Eng., 2016, 4: 3196-3211.

[5]

Bischof RH, Fourtis L, Limbeck A, Gamauf C, Seiboth B, Kubicek CP. Comparative analysis of the Trichoderma reesei transcriptome during growth on the cellulase inducing substrates wheat straw and lactose. Biotechnol Biofuels, 2013, 6(1): 127.

[6]

Bischof RH, Ramoni J, Seiboth B. Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microb Cell Fact, 2016, 15(1): 106.

[7]

Buchert J, Oksanen J, Pere J, Siika-aho M, Suurnäkki A, Viikari L. Harman GE, Kubicek CP. Application of Trichoderma reesei enzymes in the pulp and paper industry. Trichoderma and Gliocladium, 1998, London: Taylor and Francis Ltd, 343-364.

[8]

Chen L, Zou G, Wang J, Wang J, Liu R, Jiang Y, Zhao G, Zhou Z. Characterization of the Ca2+ responsive signaling pathway in regulating the expression and secretion of cellulases in Trichoderma reesei Rut-C30. Mol Microbiol, 2016, 100(3): 560-575.

[9]

Dos Santos Castro L, de Paula RG, Antonieto AC, Persinoti GF, Silva-Rocha R, Silva RN. Understanding the role of the master regulator XYR1 in Trichoderma reesei by global transcriptional analysis. Front Microbiol, 2016, 7: 175.

[10]

Furukawa T, Shida Y, Kitagami N, Mori K, Kato M, Kobayashi T, Okada H, Ogasawara W, Morikawa Y. Identification of specific binding sites for XYR1, a transcriptional activator of cellulolytic and xylanolytic genes in Trichoderma reesei. Fungal Genet Biol, 2009, 46: 564-574.

[11]

Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G. Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol, 2006, 24: 549-556.

[12]

Häkkinen M, Valkonen MJ, Westerholm-Parvinen A, Aro N, Arvas M, Vitikainen M, Penttilä M, Saloheimo M, Pakula TM. Screening of candidate regulators for cellulase and hemicellulase production in trichoderma reesei and identification of a factor essential for cellulase production. Biotechnol Biofuels, 2014, 7(1): 14.

[13]

Ju YL, Sung BH, Yu BJ, Lee JH, Sang HL, Mi SK, Koob MD, Sun CK. Phenotypic engineering by reprogramming gene transcription using novel artificial transcription factors in Escherichia coli. Nucleic Acids Res, 2008, 36(16): e102.

[14]

Lee SW, Kim E, Kim JS, Oh MK. Artificial transcription regulator as a tool for improvement of cellular property in Saccharomyces cerevisiae. Chem Eng Sci, 2013, 103: 42-49.

[15]

Li Y, Liu C, Bai F, Zhao X. Overproduction of cellulase by Trichoderma reesei RUT C30 through batch-feeding of synthesized low-cost sugar mixture. Bioresour Technol, 2016, 216: 503-510.

[16]

Li C, Lin F, Zhou L, Qin L, Li B, Zhou Z, Jin M, Chen Z. Cellulase hyper-production by Trichoderma reesei mutant SEU-7 on lactose. Biotechnol Biofuels, 2017, 10: 228.

[17]

Lichius A, Bidard F, Buchholz F, Le Crom S, Martin J, Schackwitz W, Austerlitz T, Grigoriev IV, Baker SE, Margeot A, Seiboth B, Kubicek CP. Genome sequencing of the Trichoderma reesei QM9136 mutant identifies a truncation of the transcriptional regulator XYR1 as the cause for its cellulase-negative phenotype. BMC Genomics, 2015, 16: 326.

[18]

Lupas A, Dyke MV, Stock J. Predicting coiled coils from protein sequences. Science, 1991, 252: 1162-1164.

[19]

Mach-Aigner AR, Pucher ME, Steiger MG, Bauer GE, Preis SJ, Mach RL. Transcriptional regulation of xyr1, encoding the main regulator of the xylanolytic and cellulolytic enzyme system in Hypocrea jecorina. Appl Environ Microbiol, 2008, 74: 6554-6562.

[20]

Mandels M, Andreotti RE. Problems and challenges in the cellulose to cellulase fermentation. Process Biochem, 1978, 13: 6-13.

[21]

Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol, 2008, 26(5): 553.

[22]

Michielse CB, Hooykaas PJ, Ca VDH, Ram AF. Agrobacterium-mediated transformation of the filamentous fungus Aspergillus awamori. Nat Protoc, 2008, 3(10): 1671-1678.

[23]

Miller L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem, 1959, 31: 426-428.

[24]

Parisutham V, Kim TH, Lee SK. Feasibilities of consolidated bioprocessing microbes: from pretreatment to biofuel production. Bioresour Technol, 2014, 161: 431-440.

[25]

Portnoy T, Margeot A, Seidl-Seiboth V, Le CS, Ben CF, Linke R, Seiboth B, Kubicek CP. Differential regulation of the cellulase transcription factors XYR1, ACE2, and ACE1 in Trichoderma reesei strains producing high and low levels of cellulase. Eukaryot Cell, 2011, 10(2): 262-271.

[26]

Pryor SW, Nahar N. β-Glucosidase supplementation during biomass hydrolysis: how low can we go?. Biomass Bioenergy, 2015, 80: 298-302.

[27]

Pucher ME, Steiger MG, Mach RL, Mach-Aigner AR. A modified expression of the major hydrolase activator in Hypocrea jecorina (Trichoderma reesei) changes enzymatic catalysis of biopolymer degradation. Catal Today, 2011, 167: 122-128.

[28]

Qiu Z, Gao Q, Bao J. Constructing xylose-assimilating pathways in Pediococcus acidilactici for high titer d-lactic acid fermentation from corn stoverfeedstock. Bioresour Technol, 2017, 245: 1369-1376.

[29]

Rauscher R, Wurleitner E, Wacenovsky C, Aro N, Stricker AR, Zeilinger S, Kubicek CP, Penttila M, Mach RL. Transcriptional regulation of xyn1, encoding xylanase I, in Hypocrea jecorina. Eukaryot Cell, 2006, 5: 447-456.

[30]

Sadowski I, Ma J, Triezenberg S, Ptashne M. GAL4-VP16 is an unusually potent transcriptional activator. Nature, 1988, 335(6190): 563-564.

[31]

Saloheimo A, Aro N, Ilmén M, Penttilä M. Isolation of the ace1 gene encoding a Cys2-His2 transcription factor involved in regulation of activity of the cellulase promoter cbh1 of Trichoderma reesei. J Biol Chem, 2000, 275: 5817-5825.

[32]

Steiger MG, Mach RL, Mach-Aigner AR. A Stricker n accurate normalization strategy for RT-qPCR in Hypocrea jecorina (Trichoderma reesei). J Biotechnol, 2010, 145: 30-37.

[33]

Stricker AR, Grosstessner-Hain K, Wurleitner E, Mach RL. Xyr1 (xylanase regulator 1) regulates both the hydrolytic enzyme system and d-xylose metabolism in Hypocrea jecorina. Eukaryot Cell, 2006, 5: 2128-2137.

[34]

Stricker AR, Trefflinger P, Aro N, Penttilä M, Mach RL. Role of ace2 (activator of cellulases 2) within the xyn2 transcriptosome of Hypocrea jecorina. Fungal Genet Biol, 2008, 45(4): 436.

[35]

Su X, Chu X, Dong Z. Identification of elevated transcripts in a Trichoderma reesei strain expressing a chimeric transcription activator using suppression subtractive hybridization. World J Microb Biotechnol, 2009, 25(6): 1075-1084.

[36]

Triezenberg SJ, Kingsbury RC, Mcknight SL. Functional dissection of VP16, the trans-activator of herpes simplex virus immediate early gene expression. Genes Dev, 1988, 2(6): 718-729.

[37]

Uzbas F, Sezerman U, Hartl L, Kubicek CP, Seiboth B. A homologous production system for Trichoderma reesei secreted proteins in a cellulase-free background. Appl Microbiol Biotechnol, 2012, 93: 1601-1608.

[38]

Vicari KJ, Vicari KJ, Shatova T, Joo KK, Scarlata CJ, Humbird D, Wolfrum EJ, Beckham GT. Uncertainty in techno-economic estimates of cellulosic ethanol production due to experimental measurement uncertainty. Biotechnol Biofuels, 2012, 5(1): 1-12.

[39]

Wang W, Shi X, Wei D. Light-mediated control of gene expression in filamentous fungus Trichoderma reesei. J Microbiol Methods, 2014, 103: 37-39.

[40]

Zeilinger S, Mach RL, Schindler M, Herzog P, Kubicek CP. Different inducibility of expression of the two xylanase genes xyn1 and xyn2 in Trichoderma reesei. J Biol Chem, 1996, 271: 25624-25629.

[41]

Zhang F, Bai F, Zhao X. Enhanced cellulase production from Trichoderma reesei RUT C30 by engineering with an artificial zinc finger protein library. Biotechnol J, 2016, 11: 1282-1290.

[42]

Zhang L, Zhao X, Zhang G, Zhang J, Wang X, Zhang S, Wang W, Wei D. Light-inducible genetic engineering and control of non-homologous end-joining in industrial eukaryotic microorganisms: LML 3.0 and OFN 1.0. Sci Rep, 2016, 6: 20761.

[43]

Zhang X, Li Y, Zhao X, Bai F. Constitutive cellulase production from glucose using the recombinant Trichoderma reesei strain overexpressing an artificial transcription activator. Bioresour Technol, 2017, 223: 317-322.

[44]

Zhang J, Zhang G, Wang W, Wang W, Wei D. Enhanced cellulase production in Trichoderma reesei RUT C30 via constitution of minimal transcriptional activators. Microb Cell Fact, 2018, 17: 75.

Funding

National Natural Science Foundation of China(C010302-31500066)

Fundamental Research Funds for the Central Universities(222201714053)

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/