2-Hydroxy-4-(3′-oxo-3′H-benzofuran-2′-yliden)but-2-enoic acid biosynthesis from dibenzofuran using lateral dioxygenation in a Pseudomonas putida strain B6-2 (DSM 28064)

Xin Liu , Weiwei Wang , Haiyang Hu , Xinyu Lu , Lige Zhang , Ping Xu , Hongzhi Tang

Bioresources and Bioprocessing ›› 2018, Vol. 5 ›› Issue (1) : 23

PDF
Bioresources and Bioprocessing ›› 2018, Vol. 5 ›› Issue (1) : 23 DOI: 10.1186/s40643-018-0209-5
Research

2-Hydroxy-4-(3′-oxo-3′H-benzofuran-2′-yliden)but-2-enoic acid biosynthesis from dibenzofuran using lateral dioxygenation in a Pseudomonas putida strain B6-2 (DSM 28064)

Author information +
History +
PDF

Abstract

Background

Benzofuran and its derivatives contain central pharmacophores and are important structures in medicinal chemistry. Chemical synthesis of benzofuran rings often requires expensive catalysts and stringent operational conditions. Biosynthesis is recognized as a promising way to save energy and produce valuable compounds. Dioxin biodegradation pathways can form several benzofuran derivatives, and these pathways may be a better choice for further synthesis of important biological compounds. 2-Hydroxy-4-(3′-oxo-3′H-benzofuran-2′-yliden)but-2-enoic acid (HOBB), a benzofuran derivative, can be biosynthesized from dibenzofuran (DBF) through co-metabolic degradation in a lateral dioxygenation pathway.

Results

Efficient biosynthesis of HOBB was observed using whole cells of Pseudomonas putida strain B6-2. After cultivation in LB medium containing biphenyl, the cells were suspended to an OD600 of 5 to conduct biosynthesis in the presence of 0.5-mM DBF at pH 7 for 8 h. The bacterial cells were used twice to degrade approximately 0.70-mM DBF, and in batch process, accumulated about 0.29-mM HOBB. HOBB could be easily purified from the reaction with ethyl acetate using the neutral-acid extraction method, and 13.58 ± 0.31 mg of HOBB was obtained from 22.49 ± 0.74-mg DBF with an overall production yield of 60.4% (w/w). The product HOBB, which is a yellow powder, could be detected and identified by LC–MS, GC–MS, and NMR.

Conclusions

In this study, a new biological route was developed to produce HOBB from DBF using whole cells of P. putida B6-2 (DSM 28064). The biosynthesis of HOBB may contribute to studies of the DBF lateral pathway and provide a new green route for synthesizing benzofuran derivatives with pharmacological activities.

Keywords

Biosynthesize / Pseudomonas putida / Lateral dioxygenation / HOBB

Cite this article

Download citation ▾
Xin Liu, Weiwei Wang, Haiyang Hu, Xinyu Lu, Lige Zhang, Ping Xu, Hongzhi Tang. 2-Hydroxy-4-(3′-oxo-3′H-benzofuran-2′-yliden)but-2-enoic acid biosynthesis from dibenzofuran using lateral dioxygenation in a Pseudomonas putida strain B6-2 (DSM 28064). Bioresources and Bioprocessing, 2018, 5(1): 23 DOI:10.1186/s40643-018-0209-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aswathanarayanappa C, Bheemappa E, Bodke YD, Bhovi VK, Ningegowda R, Shivakumar MC, Peethambar SK, Telkar S. 5-Phenyl-1-benzofuran-2-yl derivatives: synthesis, antimicrobial, and antioxidant activity. Med Chem Res, 2013, 22(1): 78-87.

[2]

Becher D, Specht M, Hammer E, Francke W, Schauer F. Cometabolic degradation of dibenzofuran by biphenyl-cultivated Ralstonia sp. strain SBUG 290. Appl Environ Microbiol, 2000, 66(10): 4528-4531.

[3]

Cacchi S, Fabrizi G, Goggiomani A. Palladium catalysis in the construction of the benzo[b]furan and furan rings from alkynes and organic halides or triflates. Heterocycles, 2002, 56(1): 613-632.

[4]

El-Zahar MI, El-Karim SSA, Haiba ME, Khedr MA. Synthesis, antitumor activity and molecular docking study of novel benzofuran-2-yl pyrazole pyrimidine derivatives. Acta Pol Pharm, 2011, 68(3): 357-373.

[5]

Galal SA, El-All ASA, Abdallah MM, El-Diwani HI. Synthesis of potent antitumor and antiviral benzofuran derivatives. Bioorg Med Chem Lett, 2009, 19(9): 2420-2428.

[6]

Hammer E, Krowas D, Schäfer A, Specht M, Francke W, Schauer F. Isolation and characterization of a dibenzofuran-degrading yeast: identification of oxidation and ring cleavage products. Appl Environ Microbiol, 1998, 64(6): 2215-2219.

[7]

Hayakawa I, Shioya R, Agatsuma T, Furukawa H, Sugano Y. Thienopyridine and benzofuran derivatives as potent anti-tumor agents possessing different structure-activity relationships. Bioorg Med Chem Lett, 2004, 14(13): 3411-3414.

[8]

Hayakawa I, Shioya R, Agatsuma T, Furukawa H, Naruto S, Sugano Y. 4-Hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester derivatives as potent anti-tumor agents. Bioorg Med Chem Lett, 2004, 14(2): 455-458.

[9]

Hiraishi A. Biodiversity of dioxin-degrading microorganisms and potential utilization in bioremediation. Microbes Environ, 2003, 18(3): 105-125.

[10]

Hong HB, Nam IH, Murugesan K, Kim YM, Chang YS. Biodegradation of dibenzo-p-dioxin, dibenzofuran, and chlorodibenzo-p-dioxins by Pseudomonas veronii PH-03. Biodegradation, 2004, 15(5): 303-313.

[11]

Hsieh SC, Wang JH, Lai YC, Su CY, Lee KT. Production of 1-dodecanol, 1-tetradecanol, and 1,12-dodecanediol by whole-cell biotransformation in Escherichia coli. Appl Environ Microbiol, 2017, 84(4): e01806-e01817.

[12]

Ishige T, Honda K, Shimizu S. Whole organism biocatalysis. Curr Opin Chem Biol, 2005, 9(2): 174-180.

[13]

Jaiswal PK, Kohli S, Gopal M, Thakur IS. Isolation and characterization of alkalotolerant Pseudomonas sp. strain ISTDF1 for degradation of dibenzofuran. J Ind Microbiol Biotechnol, 2011, 38(4): 503-511.

[14]

Judd DB, Cardwell KS, Panchal TA, Jack TI, Pass M, Hubbard T, Dean AW, Butt AU, Hobson JE, Heron NM, Watson SP, Currie GS, Middlemiss D, Allen DG, Aston NM, Paton JMS, Drew GM, Hilditch A, Gallacher D, Bayliss MK, Donnelly MC. Benzofuran based non-peptide antagonists of angiotensin II related to GR117289: part IV; imidazopyridinylbenzofurans. Bioorg Med Chem Lett, 1994, 4(5): 725-728.

[15]

Kadisch M, Julsing MK, Schrewe M, Jehmlich N, Scheer B, Von Bergen M, Schmid A, Buhler B. Maximization of cell viability rather than biocatalyst activity improves whole-cell ω-oxyfunctionalization performance. Biotechnol Bioeng, 2017, 114(4): 874-884.

[16]

Kaiya S, Utsunomiya S, Suzuki S, Yoshida N, Futamata H, Yamada T, Hiraishi A. Isolation and functional gene analyses of aromatic-hydrocarbon-degrading bacteria from a polychlorinated-dioxin-dechlorinating process. Microbes Environ, 2012, 27(2): 127-135.

[17]

Khanam H, Shamsuzzaman. Bioactive benzofuran derivatives: a review. Eur J Med Chem, 2015, 97: 483-504.

[18]

Le TT, Murugesan K, Nam IH, Jeon JR, Chang YS. Degradation of dibenzofuran via multiple dioxygenation by a newly isolated Agrobacterium sp. PH-08. J Appl Microbiol, 2014, 116(3): 542-553.

[19]

Li L, Li QG, Li FL, Shi Q, Yu B, Liu FR, Xu P. Degradation of carbazole and its derivatives by a Pseudomonas sp. Appl Microbiol Biotechnol, 2006, 73(4): 941-948.

[20]

Li QG, Wang XY, Yin GB, Gai ZH, Tang HZ, Ma CQ, Deng ZX, Xu P. New metabolites in dibenzofuran cometabolic degradation by a biphenyl-cultivated Pseudomonas putida strain B6-2. Environ Sci Technol, 2009, 43(22): 8635-8642.

[21]

Ma YL, Zheng X, Gao H, Wan CP, Rao GX, Mao ZW. Design, synthesis, and biological evaluation of novel benzofuran derivatives bearing N-aryl piperazine moiety. Molecules, 2016, 21(12): 1684.

[22]

Matsumura F, Benezet HJ. Studies on the bioaccumulation and microbial degradation of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Environ Health Perspect, 1973, 5: 253-258.

[23]

Miller TR, Delcher AL, Salzberg SL, Saunders E, Detter JC, Halden RU. Genome sequence of the dioxin-mineralizing bacterium Sphingomonas wittichii RW1. J Bacteriol, 2010, 192(22): 6101-6102.

[24]

Mohammadi M, Sylvestre M. Resolving the profile of metabolites generated during oxidation of dibenzofuran and chlorodibenzofurans by the biphenyl catabolic pathway enzymes. Chem Biol, 2005, 12(7): 835-846.

[25]

Nevagi RJ, Dighe SN, Dighe SN. Biological and medicinal significance of benzofuran. Eur J Med Chem, 2015, 97: 561-581.

[26]

Nikel PI, Chavarría M, Danchin A, De Lorenzo V. From dirt to industrial applications: Pseudomonas putida, as a synthetic biology chassis, for hosting harsh biochemical reactions. Curr Opin Chem Biol, 2016, 34: 20-29.

[27]

Nojiri H, Kamakura M, Urata M, Tanaka T, Chung JS, Takemura T, Yoshida T, Habe H, Omori T. Dioxin catabolic genes are dispersed on the Terrabacter sp. DBF63 genome. Biochem Biophys Res Commun, 2002, 296(2): 233-240.

[28]

Nuland YMV, Vogel FAD, Eggink G, Weusthuis RA. Expansion of the ω-oxidation system AlkBGTL of Pseudomonas putida GPo1 with AlkJ and AlkH results in exclusive mono-esterified dicarboxylic acid production in E. coli. Microb Biotechnol, 2017, 10(3): 594-603.

[29]

Oppenheimer J, Johnson WL, Tracey MR, Hsung RP, Yao PY, Liu R, Zhao K. A rhodium(I)-catalyzed demethylation-cyclization of o-anisole-substituted ynamides in the synthesis of chiral 2-amido benzofurans. Org Lett, 2007, 9(12): 2361-2364.

[30]

Resnick SM, Gibson DT. Regio- and stereospecific oxidation of fluorene, dibenzofuran, and dibenzothiophene by naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. Appl Environ Microbiol, 1996, 62(11): 4073-4080.

[31]

Ritchie G. Dioxin sources and industrial emissions control—a review. Int J Environ Stud, 2000, 58(1): 99-116.

[32]

Salih KSM, Ayoub MT, Saadeh HA, Al-Masoudi NA, Mubarak MS. Synthesis, characterization, and biological activities of new benzofuran derivatives. Heterocycles, 2007, 71(7): 1577-1587.

[33]

Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B. Industrial biocatalysis today and tomorrow. Nature, 2001, 409(6817): 258-268.

[34]

Schrewe M, Julsing MK, Buehler B, Schmid A. Whole-cell biocatalysis for selective and productive C-O functional group introduction and modification. Chem Soc Rev, 2013, 42(15): 6346-6377.

[35]

Seeger M, Cámara B, Hofer B. Dehalogenation, denitration, dehydroxylation, and angular attack on substituted biphenyls and related compounds by a biphenyl dioxygenase. J Bacteriol, 2001, 183(12): 3548-3555.

[36]

Shi SN, Zhang XW, Ma F, Sun TH, Li A, Zhou JT, Qu YY. Cometabolic degradation of dibenzofuran by Comamonas sp. MQ. Process Biochem, 2013, 48(10): 1553-1558.

[37]

Shi SN, Qu YY, Fang M, Zhou JT. Bioremediation of coking wastewater containing carbazole, dibenzofuran, dibenzothiophene and naphthalene by a naphthalene-cultivated Arthrobacter sp. W1. Bioresour Technol, 2014, 164: 28-33.

[38]

Stope MB, Becher D, Hammer E, Schauer F. Cometabolic ring fission of dibenzofuran by gram-negative and gram-positive biphenyl-utilizing bacteria. Appl Microbiol Biotechnol, 2002, 59(1): 62-67.

[39]

Tang HZ, Yu H, Li QG, Wang XY, Gai ZH, Yin GB, Su F, Tao F, Ma C, Xu P. Genome sequence of Pseudomonas putida strain B6-2, a superdegrader of polycyclic aromatic hydrocarbons and dioxin-like compounds. J Bacteriol, 2011, 193(23): 6789-6790.

[40]

Trost BM, Mcclory A. Rhodium-catalyzed cycloisomerization: formation of indoles, benzofurans, and enol lactones. Angew Chem Int Ed Engl, 2007, 46(12): 2074-2077.

[41]

Wang SN, Xu P, Tang HZ, Meng J, Liu XL, Qing C. “Green” route to 6-hydroxy-3-succinoyl-pyridine from (S)-nicotine of tobacco waste by whole cells of a Pseudomonas sp. Environ Sci Technol, 2005, 39(17): 6877-6880.

[42]

Wang WW, Xu P, Tang HZ. Sustainable production of valuable compound 3-succinoyl-pyridine by genetically engineering Pseudomonas putida using the tobacco waste. Sci Rep, 2015, 5: 16411.

[43]

Ward CT, Matsumura F. Fate of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in a model aquatic environment. Arch Environ Contam Toxicol, 1978, 7(3): 349-357.

[44]

Wesche J, Hammer E, Becher D, Burchhardt G, Schauer F. The bphC gene-encoded 2,3-dihydroxybiphenyl-1,2-dioxygenase is involved in complete degradation of dibenzofuran by the biphenyl-degrading bacterium Ralstonia sp. SBUG 290. J Appl Microbiol, 2005, 98(3): 635-645.

[45]

Wilkes H, Wittich RM, Timmis KN, Fortnagel P, Francke W. Degradation of chlorinated dibenzofurans and dibenzo-p-dioxins by Sphingomonas sp. strain RW1. Appl Environ Microbiol, 1996, 62(2): 367-371.

[46]

Wittich RM. Degradation of dioxin-like compounds by microorganisms. Appl Microbiol Biotechnol, 1998, 49(5): 489-499.

[47]

Wittich RM, Wilkes H, Sinnwell V, Francke W, Fortnagel P. Metabolism of dibenzo-p-dioxin by Sphingomonas sp. strain RW1. Appl Environ Microbiol, 1992, 58(3): 1005-1010.

[48]

Xu P, Yu B, Li FL, Cai XF, Ma CQ. Microbial degradation of sulfur, nitrogen and oxygen heterocycles. Trends Microbiol, 2006, 14(9): 398-405.

[49]

Yamazoe A, Yagi O, Oyaizu H. Degradation of polycyclic aromatic hydrocarbons by a newly isolated dibenzofuran-utilizing Janibacter sp. strain YY-1. Appl Microbiol Biotechnol, 2004, 65(2): 211-218.

[50]

Yao XM, Tao F, Zhang KZ, Tang HZ, Xu P. Multiple roles of two efflux pumps in a polycyclic aromatic hydrocarbon-degrading Pseudomonas putida strain B6-2 (DSM 28064). Appl Environ Microbiol, 2017, 83(24): e01882-17.

[51]

Yeung KS. Gribble GW. Furans and benzofurans. Metalation of azoles and related five-membered ring heterocycles, 2012, Berlin Heidelberg, Berlin: Springer, 47-76.

[52]

Yu H, Tang HZ, Xu P. Green strategy from waste to value-added-chemical production: efficient biosynthesis of 6-hydroxy-3-succinoyl-pyridine by an engineered biocatalyst. Sci Rep, 2014, 4: 5397.

[53]

Yu WJ, Wang RS, Li HL, Liang JY, Wang YY, Huang HY, Xie HJ, Wang SN. Green route to synthesis of valuable chemical 6-hydroxynicotine from nicotine in tobacco wastes using genetically engineered Agrobacterium tumefaciens S33. Biotechnol Biofuels, 2017, 10(1): 288.

[54]

Zhao H, van der Donk WA. Regeneration of cofactors for use in biocatalysis. Curr Opin Biotechnol, 2003, 14(6): 583-589.

Funding

Chinese National Science Foundation(31422004)

Science and Technology Commission of Shanghai Municipality(17JC1403300)

Shuguang Program(17SG09)

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/