Degradation of polycyclic aromatic hydrocarbons (phenanthrene and pyrene) by the ligninolytic fungi Ganoderma lucidum isolated from the hardwood stump

Nikki Agrawal , Preeti Verma , Sushil Kumar Shahi

Bioresources and Bioprocessing ›› 2018, Vol. 5 ›› Issue (1) : 11

PDF
Bioresources and Bioprocessing ›› 2018, Vol. 5 ›› Issue (1) : 11 DOI: 10.1186/s40643-018-0197-5
Research

Degradation of polycyclic aromatic hydrocarbons (phenanthrene and pyrene) by the ligninolytic fungi Ganoderma lucidum isolated from the hardwood stump

Author information +
History +
PDF

Abstract

Background

Due to progress in science and technology, several harmful polycyclic aromatic hydrocarbons are synthesized and released into the environment. In the present investigation, a phenanthrene- and pyrene-degrading white rot fungi Ganoderma lucidum strain CCG1 was isolated from the Janjgir Champa district of Chhattisgarh, India, and then the degradation of phenanthrene and pyrene was estimated by high-performance liquid chromatography.

Results

It was found that G. lucidum able to degrade 99.65% of 20 mg/L of phenanthrene and 99.58% of pyrene in mineral salt broth after 30th day of incubation at 27 °C. G. lucidum produced significant amounts (p < 0.0001) of ligninolytic enzymes (Laccase, lignin peroxidase and manganese peroxidase) in the phenanthrene- and pyrene-containing mineral salt broth. G. lucidum produced maximum 10,788.00 U/L laccase, 3283.00 U/L Lignin peroxidase and 47,444.00 U/L Manganese peroxidase enzymes in the presence of phenanthrene and produced maximum 10,166.00 U/L laccase, 3613.00 U/L lignin peroxidase and 50,977.00 U/L manganese peroxidase enzymes in the presence of pyrene. Therefore, G. lucidum will be a potent phenanthrene and pyrene degrader from the environment.

Keywords

Ganoderma lucidum / Phenanthrene and pyrene degradation / Ligninolytic enzyme / HPLC / 18S rRNA sequencing

Cite this article

Download citation ▾
Nikki Agrawal, Preeti Verma, Sushil Kumar Shahi. Degradation of polycyclic aromatic hydrocarbons (phenanthrene and pyrene) by the ligninolytic fungi Ganoderma lucidum isolated from the hardwood stump. Bioresources and Bioprocessing, 2018, 5(1): 11 DOI:10.1186/s40643-018-0197-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adenipekun CO, Ejoh OE, Ogunjobi AA. Bioremediation of cutting fluids contaminated soil by Pleurotus tuber-regium Singer. Environmentalist, 2012, 32: 11-18.

[2]

Agrawal N, Shahi SK. Degradation of polycyclic aromatic hydrocarbon (pyrene) using novel fungal strain Coriolopsis byrsina strain APC5. Int Biodeterior Biodegrad, 2017, 122: 69-81.

[3]

Agrawal N, Verma P, Singh RS, Shahi SK. Ganoderma lucidum: a potent source of ligninolytic enzyme production. Int J Adv Res, 2017, 5(5): 1977-1981.

[4]

Aitken MD, Stringfellow WT, Nagel RD, Kazunga C, Chen SH. Characteristics of phenanthrene-degrading bacteria isolated from soils contaminated with polycyclic aromatic hydrocarbons. Can J Microbiol, 1998, 44(8): 743-752.

[5]

Archibald FS. A new assay for lignin type peroxidase employing the dye Azure B. Appl Environ Microbiol, 1992, 58: 3110-3116.

[6]

Balesteros MR, de Sa LRV, Pereira PM, da Silva M, de Oliveira MAL, Ferreira-Leitao VS. Monitoring of atrazine biodegradation by Pleurotus ostreatus INCQS 40310 through the simultaneous analysis of atrazine and its derivatives by HPLC. Biocatal Biotransformation, 2014, 32: 23-33.

[7]

Bezalel L, Hadar Y, Fu PP, Freeman JP, Cerniglia CE. Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol, 1996, 62(7): 2547-2553.

[8]

Bezalel L, Hadar Y, Cerniglia CE. Enzymatic mechanisms involved in phenanthrene degradation by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol, 1997, 63(7): 2495-2501.

[9]

Bishnoi NR, Mehta U, Sain U, Pandit GG. Quantification of polycyclic aromatic hydrocarbons in tea and coffee samples of Mumbai city (India) by high performance liquid chromatography. Environ Monit Assess, 2005, 107: 399-406.

[10]

Bishnoi K, Kumar R, Bishnoi NR. Biodegradation of polycyclic aromatic hydrocarbons by white rot fungi Phanerochaete chrysosporium in sterile and unsterile soil. J Sci Ind Res, 2008, 67: 538-542.

[11]

Bogan B, Lamar RT. Polycyclic aromatic hydrocarbon degrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes. Appl Environ Microbiol, 1996, 62: 1597-1603.

[12]

Boopathy R. Factors limiting bioremediation technologies. Bioresour Technol, 2000, 74: 63-67.

[13]

Casas N, Parella T, Vicent T, Caminal G, Sarra M. Metabolites from the biodegradation of triphenylmethane dyes by Trametes versicolor or laccase. Chemosphere, 2009, 75: 1344-1349.

[14]

Casillas RP, Crow SA, Heinze TM, Deck J, Cerniglia CE. Initial oxidative and subsequent conjugative metabolites produced during the metabolism of phenanthrene by fungi. J Ind Microbiol Biotechnol, 1996, 16(4): 205-215.

[15]

Cerniglia CE, Sutherland JB, Crow SA. Winkelmann G. Fungal metabolism of aromatic hydrocarbons. Microbial degradation of natural products, 1992, Weinheim: VCH Press, 193-217.

[16]

Choi YW, Hyde KD, Ho WH. Single spore isolation of fungi. Fungal Divers, 1999, 3: 29-38.

[17]

de Jong ED, Field JA, de Bont JA. Evidence for a new extracellular peroxidase manganese inhibited peroxidase from the white rot fungus Bjerkandera sp. BOS 55. FEBS Lett, 1992, 299: 107-110.

[18]

Di Toro DM, McGrath JA, Hansen DJ. Technical basis for narcotic chemicals and polycyclic aromatic hydrocarbon criteria. I. Water and tissue. Environ Toxicol Chem, 2000, 19(8): 1951-1970.

[19]

Dominguez A, Couto SR, Sanroman MA. Dye decolorization by Trametes hirsuta immobilized into alginate beads. World J Microbiol Biotechnol, 2005, 21(4): 405-409.

[20]

Faraco V, Giardina P, Palmieri G, Sannia G. Metal activated laccase promoters. Progress Biotechnol Amst, 2002, 21: 105-112.

[21]

Field JA, de Jong E, Costa GF, de Bont JAM. Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Appl Environ Microbiol, 1992, 58: 2219-2226.

[22]

Hadibarata T, Kristanti RA. Fate and cometabolic degradation of benzo[a]pyrene by white rot fungus Armillaria sp. F022. Bioresour Technol, 2012, 107: 314-318.

[23]

Hadibarata T, Kristanti RA. Biodegradation and metabolite transformation of pyrene by basidiomycetes fungal isolate Armillaria sp. F022. Bioprocess Biosyst Eng, 2013, 36(4): 461-468.

[24]

Hadibarata T, Tachibana S. Characterization of phenanthrene degradation by strain Polyporus sp. S133. J Environ Sci, 2010, 22(1): 142-149.

[25]

Hammel KE. Mechanisms for polycyclic aromatic hydrocarbon degradation by ligninolytic fungi. Environ Health Perspect, 1995, 103(5): 41.

[26]

Hammel KE. Young LY, Cerniglia CE. Organopollutant degradation by ligninolytic fungi. Microbial transformation and degradation of toxic organic chemicals, 1995, New York: Wiley, 331-346.

[27]

Hammel KE, Gai WZ, Green B, Moen MA. Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium. Appl Environ Microbiol, 1992, 58(6): 1832-1838.

[28]

Han MJ, Choi HT, Song HG. Degradation of phenanthrene by Trametes versicolor and its laccase. J Microbiol, 2004, 42(2): 94-98.

[29]

Hardik P, Akshaya G, Shilpa G. Biodegradation of pyrene by Pleurotus ostreatus HP-1 and its correlation with extracellular ligninolytic enzyme production. Int J Environ Agric Res, 2010, 3(3): 313-319.

[30]

Haritash AK, Kaushik CP. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater, 2009, 169: 1-15.

[31]

Heinzkill M, Bech L, Halkier T, Schneider P, Anke T. Characterization of laccases and peroxidases from wood rotting fungi (family Coprinaceae). Appl Environ Microbiol, 1998, 64(5): 1601-1606.

[32]

Ijoma GN, Tekere M. Potential microbial applications of co-cultures involving ligninolytic fungi in the bioremediation of recalcitrant xenobiotic compounds. Int J Environ Sci Technol, 2017

[33]

Jin D, Jiang X, Jing X, Ou Z. Effects of concentration, head group and structure of surfactants on the degradation of phenanthrene. J Hazard Mat, 2007, 144: 215-221.

[34]

Juhasz AL, Naidu R. Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeterior Biodegrad, 2000, 45: 57-88.

[35]

Kadri T, Rouissi T, Brar SK, Cledon M, Sarma S, Verma M. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: a review. J Environ Sci, 2017, 51: 52-74.

[36]

Khudhair AB, Hadibarata T, Yusoff ARM, Teh ZC, Adnan LA, Kamya H. Pyrene metabolism by new species isolated from soil Rhizoctonia zeae SOL3. Water Air Soil Pollut, 2015, 226: 186.

[37]

Kitamura S, Suzuki T, Sanoh S, Kohta R, Jinno N, Sugihara K, Yoshihara S, Fujimoto N, Watanabe H, Ohta S. Comparative study of the endocrine-disrupting activity of bisphenol A and 19 related compounds. Toxicol Sci, 2005, 84: 249-259.

[38]

Kumar AK, Sharma S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess, 2017, 4(1): 7.

[39]

Lange B, Kremer S, Sterner O, Anke H. Pyrene metabolism in Crinipellis stipitaria: identification of trans-4, 5-dihydro-4,5-dihydroxypyrene and 1-pyrenylsulfate in strain JK364. Appl Environ Microbiol, 1994, 60(10): 3602-3607.

[40]

Lawton JH, Jones CG (1995) Linking species and ecosystems: organisms as ecosystem engineers. In: Linking species and ecosystems. Springer, Boston, MA, ​pp 141–150.

[41]

Lee SM, Koo BW, Lee SS, Kim MK, Choi DH, Hong EJ, Jeung EB, Choi IG. Biodegradation of dibutyl phthalate by white rot fungi and evaluation on its estrogenic activity. Enzyme Microb Technol, 2004, 35: 417-423.

[42]

Makkar RS, Rockne KJ. Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons. Environ Toxicol Chem, 2003, 22: 2280-2292.

[43]

Mrozik A, Piotrowska-Seget Z. Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res, 2010, 165: 363-375.

[44]

Pointing SB. Feasibility of bioremediation by white rot fungi. Appl Microbiol Biotechnol, 2001, 57: 20-33.

[45]

Pothuluri JV, Selby A, Evans FE, Freeman JP, Cerniglia CE. Transformation of chrysene and other polycyclic aromatic hydrocarbon mixtures by the fungus Cunninghamella elegans. Can J Microbiol, 1995, 73(S1): 1025-1033.

[46]

Pozdnyakova NN, Nikiforova SV, Makarov OE, Chernyshova MP, Pankin KE, Turkovskaya OV. Influence of cultivation conditions on pyrene degradation by the fungus Pleurotus ostreatus D1. World J Microbiol Biotechnol, 2010, 26: 205-211.

[47]

Puglisi E, Cappa F, Fragoulis G, Trevisan M, Del Re AA. Bioavailability and degradation of phenanthrene in compost amended soils. Chemosphere, 2007, 67: 548-556.

[48]

Rengarajan T, Rajendran P, Nandakumar N, Lokeshkumar B, Rajendran P, Nishigaki I. Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pac J Trop Biomed, 2015, 5(3): 182-189.

[49]

Rigas F, Papadopoulou K, Philippoussis A, Papadopoulou M, Chatzipavlidis J. Bioremediation of lindane contaminated soil by Pleurotus ostreatus in non-sterile conditions using multilevel factorial design. Water Air Soil Pollut, 2009, 197: 121-129.

[50]

Rostami I, Juhasz AL. Assessment of persistent organic pollutant (POP) bioavailability and bioaccessibility for human health exposure assessment: a critical review. Crit Rev Environ Sci Technol, 2011, 41(7): 623-656.

[51]

Sack U, Heinze TM, Deck J, Cerniglia CE, Martens R, Zadrazil F, Fritsche W. Comparison of phenanthrene and pyrene degradation by different wood-decaying fungi. Appl Environ Microbiol, 1997, 63(10): 3919-3925.

[52]

Sandhu DK, Arora DS. Laccase production by Polyporus sanguineus under different nutritional and environmental conditions. Experientia, 1985, 41: 355-356.

[53]

Sannia G, Faraco V, Giardina P, Palmieri G (2001) Metal-activated laccase promoters. In: Proceedings of the 8th international conference on biotechnology in the pulp and paper industry, Helsinki, Finland

[54]

Singh H. Mycoremediation: fungal bioremediation, 2006, New Jersey: Wiley

[55]

Song HG. Comparison of pyrene biodegradation by white rot fungi. World J Microbiol Biotechnol, 1999, 5: 669-672.

[56]

Sutherland JB, Selby AL, Freeman JP, Evans FE, Cerniglia CE. Metabolism of phenanthrene by Phanerochaete chrysosporium. Appl Environ Microbiol, 1991, 57(11): 3310-3316.

[57]

Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596-1599.

[58]

Teerapatsakul C, Pothiratana C, Chitradon L, Thachepan S. Biodegradation of polycyclic aromatic hydrocarbons by a thermotolerant white rot fungus Trametes polyzona RYNF13. J Gen Appl Microbiol, 2016

[59]

Teh ZC, Hadibarata T. Enhanced degradation of pyrene and metabolite identification by Pleurotus eryngii F032. Water Air Soil Pollut, 2014, 225(5): 1909.

[60]

Ting WTE, Yuan SY, Wu SD, Chang BV. Biodegradation of phenanthrene and pyrene by Ganoderma lucidum. Int Biodeterior Biodegrad, 2011, 65: 238-242.

[61]

Tirado-Torres D, Gayosso-Canales M, Marmolejo-Santillan Y, Romo-Gomez C, Acevedo-Sandoval O. Removal of polycyclic aromatic hydrocarbons by Pleurotus ostreatus sp. ATCC38540 in liquid medium. Acad J Sci Res, 2016, 4(10): 376-379.

[62]

Tisma M, Sudar M, Vasic-Racki D, Zelic B. Mathematical model for Trametes versicolor growth in submerged cultivation. Bioprocess Biosyst Eng, 2010, 33: 749-758.

[63]

Wang C, Sun H, Li Y, Zhang Q. Enzyme activities during degradation of polycyclic aromatic hydrocarbons by white rot fungus Phanerochaete chrysosporium in soils. Chemosphere, 2009, 77: 733-738.

[64]

Wen J, Gao D, Zhang B, Liang H. Co-metabolic degradation of pyrene by indigenous white-rot fungus Pseudotrametes gibbosa from the northeast China. Int Biodeterior Biodegrad, 2011, 65(4): 600-604.

[65]

Wong DWS. Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol, 2009, 157: 174-209.

[66]

Wu M, Xu Y, Ding W, Li Y, Xu H. Mycoremediation of manganese and phenanthrene by Pleurotus eryngii mycelium enhanced by Tween 80 and saponin. Appl Microbiol Biotechnol, 2016, 100: 7249-7261.

[67]

Wunder T, Kremer S, Sterner O, Anke H. Metabolism of the polycyclic aromatic hydrocarbon pyrene by Aspergillus niger SK 9317. Appl Microbiol Biotechnol, 1994, 42(4): 636-641.

[68]

Zhang S, Ning Y, Zhang X, Zhao Y, Yang X, Wu K, Yang S, La G, Sun X, Li X. Contrasting characteristics of anthracene and pyrene degradation by wood rot fungus Pycnoporus sanguineus H1. Int Biodeterior Biodegrad, 2015, 105: 228-232.

[69]

Zhuo R, Ma L, Fan F, Gong Y, Wan X, Jiang M, Zhang X, Yang Y. Decolorization of different dyes by a newly isolated white-rot fungi strain Ganoderma sp. En3 and cloning and functional analysis of its laccase gene. J Hazard Mater, 2011, 192(2): 855-873.

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/