Degradation of polycyclic aromatic hydrocarbons (phenanthrene and pyrene) by the ligninolytic fungi Ganoderma lucidum isolated from the hardwood stump
Nikki Agrawal , Preeti Verma , Sushil Kumar Shahi
Bioresources and Bioprocessing ›› 2018, Vol. 5 ›› Issue (1) : 11
Degradation of polycyclic aromatic hydrocarbons (phenanthrene and pyrene) by the ligninolytic fungi Ganoderma lucidum isolated from the hardwood stump
Due to progress in science and technology, several harmful polycyclic aromatic hydrocarbons are synthesized and released into the environment. In the present investigation, a phenanthrene- and pyrene-degrading white rot fungi Ganoderma lucidum strain CCG1 was isolated from the Janjgir Champa district of Chhattisgarh, India, and then the degradation of phenanthrene and pyrene was estimated by high-performance liquid chromatography.
It was found that G. lucidum able to degrade 99.65% of 20 mg/L of phenanthrene and 99.58% of pyrene in mineral salt broth after 30th day of incubation at 27 °C. G. lucidum produced significant amounts (p < 0.0001) of ligninolytic enzymes (Laccase, lignin peroxidase and manganese peroxidase) in the phenanthrene- and pyrene-containing mineral salt broth. G. lucidum produced maximum 10,788.00 U/L laccase, 3283.00 U/L Lignin peroxidase and 47,444.00 U/L Manganese peroxidase enzymes in the presence of phenanthrene and produced maximum 10,166.00 U/L laccase, 3613.00 U/L lignin peroxidase and 50,977.00 U/L manganese peroxidase enzymes in the presence of pyrene. Therefore, G. lucidum will be a potent phenanthrene and pyrene degrader from the environment.
Ganoderma lucidum / Phenanthrene and pyrene degradation / Ligninolytic enzyme / HPLC / 18S rRNA sequencing
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
Lawton JH, Jones CG (1995) Linking species and ecosystems: organisms as ecosystem engineers. In: Linking species and ecosystems. Springer, Boston, MA, pp 141–150. |
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
Sannia G, Faraco V, Giardina P, Palmieri G (2001) Metal-activated laccase promoters. In: Proceedings of the 8th international conference on biotechnology in the pulp and paper industry, Helsinki, Finland |
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
/
| 〈 |
|
〉 |