Exotic glycerol dehydrogenase expressing Escherichia coli increases yield of 2,3-butanediol

Md. Shafiqur Rahman , Chunbao Charles Xu , Wensheng Qin

Bioresources and Bioprocessing ›› 2018, Vol. 5 ›› Issue (1) : 3

PDF
Bioresources and Bioprocessing ›› 2018, Vol. 5 ›› Issue (1) : 3 DOI: 10.1186/s40643-018-0189-5
Research

Exotic glycerol dehydrogenase expressing Escherichia coli increases yield of 2,3-butanediol

Author information +
History +
PDF

Abstract

Background

The thriving of biodiesel industry has led to produce 10% (v/v) crude glycerol, thus creating an overflow problem. Biofuel production is restricted by Escherichia coli due to its toxicity to bacterial cells. Therefore, a platform chemical and fuel additive 2,3-butanediol (2,3-BD) with low toxicity to microbes could be a promising alternative for biofuel production by recombinant E. coli using glycerol as the sole substrate.

Results

A novel expression system of E. coli was developed to express the dhaD gene encoding glycerol dehydrogenase (GDH) to produce value-added metabolic products through aerobic biotransformation of glycerol. The dhaD gene obtained from Klebsiella pneumoniae SRP2 was expressed in E. coli BL21(DE3)pLysS using an E. coliK. pneumoniae shuttle vector pJET1.2/blunt consisting of chloramphenicol-resistance gene under the control of the T7lac promotor. RT-PCR analysis and dhaD overexpression confirmed that the 2,3-BD synthesis pathway gene was expressed on RNA and protein levels. Therefore, the recombinant E. coli exhibited a 38.9-fold higher enzyme activity (312.57 units/mg protein), yielding 8.97 g/L 2,3-BD, a 2.4-fold increase with respect to the non-recombinant strain.

Conclusions

The engineered strain E. coli BL21(DE3)pLysS/pJET1.2/blunt-dhaD, carrying the 2,3-BD pathway gene dhaD from our newly isolated Klebsiella pneumoniae SRP2 strain, displayed the best ability to synthesize 2,3-BD from low-cost biomass glycerol. The value of expression of an important glycerol metabolism gene dhaD is the highest ever achieved with an engineered E. coli strain. From these results, the first reported dhaD expression system has paved the way for improvement of 2,3-BD production and is efficient for another heterologous gene expression in E. coli.

Keywords

Coli BL21 / T7lac Promoter / budC Gene / Cloning Vector pJET1 / pLysS Strain

Cite this article

Download citation ▾
Md. Shafiqur Rahman, Chunbao Charles Xu, Wensheng Qin. Exotic glycerol dehydrogenase expressing Escherichia coli increases yield of 2,3-butanediol. Bioresources and Bioprocessing, 2018, 5(1): 3 DOI:10.1186/s40643-018-0189-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahrens K, Menzel K, Zeng A, Deckwer W. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: III. Enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation. Biotechnol Bioeng, 1998, 59(5): 544-552.

[2]

Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJ, Hanai T, Liao JC. Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng, 2008, 10: 305-311.

[3]

Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K. Current protocols in molecular microbiology, 1987, New York: Wiley.

[4]

Baez A, Cho KM, Liao JC. High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. Appl Microbiol Biotechnol, 2011, 90: 1681-1690.

[5]

Bokinsky G, Peralta-Yahya PP, George A, Holmes BM, Steen EJ, Dietrich J, Lee TS, Tullman D, Voigt CA, Simmons BA, Keasling JD. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc Natl Acad Sci USA, 2011, 108: 19949-19954.

[6]

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248-254.

[7]

Celińska E, Grajek W. Biotechnological production of 2,3-butanediol—current state and prospects. Biotechnol Adv, 2009, 27: 715-725.

[8]

Chart H, Smith HR, La Ragione RM, Woodward MJ. An investigation into the pathogenic properties of Escherichia coli strains BLR, BL21, DH5alpha and EQ1. J Appl Microbiol, 2000, 89: 1048-1058.

[9]

Chu H, Xin B, Liu P, Wang Y, Li L, Liu X. Metabolic engineering of Escherichia coli for production of (2S,3S)-butane-2,3-diol from glucose. Biotech Biofuel, 2015, 8: 143.

[10]

Domínguez de María P. Recent developments in the biotechnological production of hydrocarbons: paving the way for bio-based platform chemicals. ChemSusChem, 2011, 4: 327-329.

[11]

Gätgens C, Degner U, Meyer SB, Herrmann U. Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343. Appl Microbiol Biotechnol, 2007, 76: 553-559.

[12]

Gross M. Looking for alternative energy sources. Curr Biol, 2012, 22: R103-R106.

[13]

Hekmat D, Bauer R, Fricke J. Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans. Bioprocess Biosyst Eng, 2003, 26: 109-116.

[14]

Ji XJ, Huang H, Ouyang PK. Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv, 2011, 29: 351-364.

[15]

Kim SJ, Seo SO, Jin YS, Seo JH. Production of 2,3-butanediol by engineered Saccharomyces cerevisiae. Bioresour Technol, 2013, 146: 274-281.

[16]

Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227: 680-685.

[17]

Li L, Wang Y, Zhang L, Ma C, Wang A, Tao F, Xu P. Biocatalytic production of (2S,3S)-2,3-butanediol from diacetyl using whole cells of engineered Escherichia coli. Bioresour Technol, 2012, 115: 111-116.

[18]

Li L, Li K, Wang Y, Chen C, Xu Y, Zhang L, Han B, Gao C, Tao F, Ma C, Xu P. Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars. Metab Eng, 2015, 28: 19-27.

[19]

Lian J, Chao R, Zhao H. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Metab Eng, 2014, 23: 92-99.

[20]

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real time quantitative PCR and 2−ΔΔCT method. Methods, 2001, 25: 402-408.

[21]

May A, Fischer RJ, Thum SM, Schaffer S, Verseck S, Peter DP, Bahl H. A modified pathway for the production of acetone in Escherichia coli. Metab Eng, 2013, 15: 218-225.

[22]

Merfort M, Herrmann U, Ha SW, Elfari M, Bringer-Meyer S, Görisch H, Sahm H. Modification of the membrane-bound glucose oxidation system in Gluconobacter oxydans significantly increases gluconate and 5-keto-d-gluconic acid accumulation. Biotechnol J, 2006, 1: 556-563.

[23]

Oliver JW, Machado IM, Yoneda H, Atsumi S. Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proc Natl Acad Sci, 2013, 110: 1249-1254.

[24]

Quintero Y, Poblet M, Guillamón JM, Mas A. Quantification of the expression of reference and alcohol dehydrogenase genes of some acetic acid bacteria in different growth conditions. J Appl Microbiol, 2009, 106: 666-674.

[25]

Rahman MS, Xu C, Ma K, Nanda M, Qin W. High production of 2,3-butanediol by a mutant strain of the newly isolated Klebsiella pneumoniae SRP2 with increased tolerance towards glycerol. Int J Biol Sci, 2015, 13: 308-318.

[26]

Sabourin-Provost G, Hallenbeck PC. High yield conversion of a crude glycerol fraction from biodiesel production to hydrogen by photofermentation. Bioresour Technol, 2009, 100: 3513-3517.

[27]

ThermoFisher Scientific (2010) One Shot BL21(DE3)plysS: Manual and Protocol. https://assets.thermofisher.com/TFS-Assets/LSG/manuals/oneshotbl21_man.pdf. Accessed 6 Dec 2017

[28]

Wang Q, Chen T, Zhao X, Chamu J. Metabolic engineering of thermophilic Bacillus licheniformis for chiral pure d-2,3-butanediol production. Biotechnol Bioeng, 2012, 109: 1610-1621.

[29]

Xiao Z, Wang X, Huang Y, Huo F, Zhu X, Xi L, Lu JR. Thermophilic fermentation of acetoin and 2,3-butanediol by a novel Geobacillus strain. Biotechnol Biofuels, 2012, 5: 88-93.

[30]

Xu H, Davies J, Miao V. Molecular characterization of class 3 integrons from Delftia spp. J Bacteriol, 2007, 189: 6276-6283.

[31]

Xu Y, Chu H, Dao C, Tao F, Zhou Z, . Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol. Metab Eng, 2014, 23: 22-33.

[32]

Yan Y, Lee CC, Liao JC. Enantioselective synthesis of pure (R, R)-2,3-butanediol in Escherichia coli with stereospecific secondary alcohol dehydrogenases. Org Biomol Chem, 2009, 7: 3914-3917.

[33]

Yang J, Nie Q, Ren M, Feng H, Jiang X, Zheng Y, Liu M, Zhang H, Xian M. Metabolic engineering of Escherichia coli for the biosynthesis of alphapinene. Biotechnol Biofuels, 2013, 6: 60-66.

[34]

Zeng AP, Sabra W. Microbial production of diols as platform chemicals: recent progresses. Curr Opin Biotechnol, 2011, 22: 749-757.

[35]

Zhang L, Xu Q, Zhan S, Li Y, Lin H, Sun S, Sha L, Hu K, Guan X, Shen Y. A new NAD(H)-dependent meso-2,3-butanediol dehydrogenase from an industrially potential strain Serratia marcescens H30. Appl Microbiol Biotechnol, 2013, 98(3): 1175-1184.

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/